2,345 research outputs found

    Long-Term Stability of Thin-Film Pd-Based Supported Membranes

    Get PDF
    Membrane reactors have demonstrated a large potential for the production of hydrogen via reforming of different feedstocks in comparison with other reactor types. However, the long-term performance and stability of the applied membranes are extremely important for the possible industrial exploitation of these reactors. This study investigates the long-term stability of thin-film Pd-Ag membranes supported on porous Al2O3 supports. The stability of five similarly prepared membranes have been investigated for 2650 h, up to 600 °C and in fluidized bed conditions. Results show the importance and the contribution of the sealing of the membranes at temperatures up to 500 °C. At higher temperatures the membranes surface deformation results in pinhole formation and a consequent decrease in selectivity. Stable operation of the membranes in a fluidized bed is observed up to 450 °C, however, at higher temperatures the scouring action of the particles under fluidization causes significant deformation of the palladium surface resulting in a decreased selectivity.The presented work is funded within BIONICO. This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671459. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation Programme, Hydrogen Europe and N.ERGHY

    Mixed Ionic-Electronic Conducting Membranes (MIEC) for Their Application in Membrane Reactors: A Review

    Get PDF
    Mixed ionic-electronic conducting membranes have seen significant progress over the last 25 years as efficient ways to obtain oxygen separation from air and for their integration in chemical production systems where pure oxygen in small amounts is needed. Perovskite materials are the most employed materials for membrane preparation. However, they have poor phase stability and are prone to poisoning when subjected to CO2 and SO2, which limits their industrial application. To solve this, the so-called dual-phase membranes are attracting greater attention. In this review, recent advances on self-supported and supported oxygen membranes and factors that affect the oxygen permeation and membrane stability are presented. Possible ways for further improvements that can be pursued to increase the oxygen permeation rate are also indicated. Lastly, an overview of the most relevant examples of membrane reactors in which oxygen membranes have been integrated are provided.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 679933. The present publication reflects only the author’s views and the European Union is not liable for any use that may be made of the information contained therein

    Recent Advances in Pd-Based Membranes for Membrane Reactors

    Get PDF
    Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys, supports, deposition/production techniques, etc. High flux and cheap membranes, yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly, when employing the membranes in fluidized bed reactors, the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes, the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports, materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes, resistance to hydrogen embrittlement and stability at high temperature.The presented work is funded within Reforcell (grant agreement No. 278997) and FERRET (grant agreement No. 621181) projects as part of European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative

    Preparation of porous stainless steel hollow-fibers through multi-modal particle size sintering towards pore engineering

    Full text link
    The sintering of metal powders is an efficient and versatile technique to fabricate porous metal elements such as filters, diffusers, and membranes. Neck formation between particles is, however, critical to tune the porosity and optimize mass transfer in order to minimize the densification process. In this work, macro-porous stainless steel (SS) hollow-fibers (HFs) were fabricated by the extrusion and sintering of a dope comprised, for the first time, of a bimodal mixture of SS powders. The SS particles of different sizes and shapes were mixed to increase the neck formation between the particles and control the densification process of the structure during sintering. The sintered HFs from particles of two different sizes were shown to be more mechanically stable at lower sintering temperature due to the increased neck area of the small particles sintered to the large ones. In addition, the sintered HFs made from particles of 10 and 44 μm showed a smaller average pore size (<1 μm) as compared to the micron-size pores of sintered HFs made from particles of 10 μm only and those of 10 and 20 μm. The novel HFs could be used in a range of applications, from filtration modules to electrochemical membrane reactors

    Intensification of Hydrogen production:Pd-Ag Membrane on Tailored Hastelloy X Filter for Membrane-Assisted Steam Methane Reforming

    Get PDF
    H2 production via membrane-assisted steam methane reforming (MA-SMR) can ensure higher energy efficiency and lower emissions compared to conventional reforming processes (SMR). Ceramic-supported Pd–Ag membranes have been extensively investigated for membrane-assisted steam methane reforming applications, with outstanding performance. However, costs, sealings for integration in the reactor structure, and resistance to solicitations remain challenging issues. In this work, the surface quality of a low-cost, porous Hastelloy-X filter is improved by asymmetric filling with α-Al2O3 of decreasing size and deposition of γ-Al2O3 as an interdiffusion barrier. On the modified support, a thin Pd–Ag layer was deposited via electroless plating (ELP), resulting in a membrane with H2/N2 selectivity >10,000. The permeation characteristics of the membrane were studied, followed by testing for membrane-assisted methane steam reforming. The results showed the ability of the membrane reactor to overcome thermodynamic conversion of the conventional process for all explored operating conditions, as well as ensuring 99.3% H2 purity in the permeate stream at 500 °C and 4 bar

    Intensification of Hydrogen production:Pd-Ag Membrane on Tailored Hastelloy X Filter for Membrane-Assisted Steam Methane Reforming

    Get PDF
    H2 production via membrane-assisted steam methane reforming (MA-SMR) can ensure higher energy efficiency and lower emissions compared to conventional reforming processes (SMR). Ceramic-supported Pd–Ag membranes have been extensively investigated for membrane-assisted steam methane reforming applications, with outstanding performance. However, costs, sealings for integration in the reactor structure, and resistance to solicitations remain challenging issues. In this work, the surface quality of a low-cost, porous Hastelloy-X filter is improved by asymmetric filling with α-Al2O3 of decreasing size and deposition of γ-Al2O3 as an interdiffusion barrier. On the modified support, a thin Pd–Ag layer was deposited via electroless plating (ELP), resulting in a membrane with H2/N2 selectivity >10,000. The permeation characteristics of the membrane were studied, followed by testing for membrane-assisted methane steam reforming. The results showed the ability of the membrane reactor to overcome thermodynamic conversion of the conventional process for all explored operating conditions, as well as ensuring 99.3% H2 purity in the permeate stream at 500 °C and 4 bar

    Hydrogen permeation studies of composite supported alumina-carbon molecular sieves membranes: Separation of diluted hydrogen from mixtures with methane

    Get PDF
    One alternative for the storage and transport of hydrogen is blending a low amount of hydrogen (up to 15 or 20%) into existing natural gas grids. When demanded, hydrogen can be then separated, close to the end users using membranes. In this work, composite alumina carbon molecular sieves membranes (Al-CMSM) supported on tubular porous alumina have been prepared and characterized. Single gas permeation studies showed that the H2/CH4 separation properties at 30 °C are well above the Robeson limit of polymeric membranes. H2 permeation studies of the H2–CH4 mixture gases, containing 5–20% of H2 show that the H2 purity depends on the H2 content in the feed and the operating temperature. In the best scenario investigated in this work, for samples containing 10% of H2 with an inlet pressure of 7.5 bar and permeated pressure of 0.01 bar at 30 °C, the H2 purity obtained was 99.4%.This project received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement N700355 (Hygrid). This Joint Undertaking receives support fromthe European Union’s Horizon 2020 Research and InnovationProgramme, Hydrogen Europe and N. ERGH

    Fluidized Bed Membrane Reactors for Ultra Pure H2 Production - A Step forward towards Commercialization

    Get PDF
    In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm3/h of ultra-pure H2 was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H2 partial pressure differences. The membranes showed very high H2 fluxes (3.89E 6 mol m 2 Pa 1 s 1 at 400 C and 1 atm pressure difference) with a H2/N2 ideal perm-selectivity (up to 21,000 when integrating five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average <10 ppm), so that the produced hydrogen can be directly fed to a low temperature PEM fuel cell

    Ultra-Selective CMSMs Derived from Resorcinol-Formaldehyde Resin for CO2 Separation

    Get PDF
    A resorcinol-formaldehyde precursor was synthesized to fabricate the CO2 selective Carbon Molecular Sieve Membranes (CMSMs) developed in this study. The degree of polymerization (DP) was analyzed via Gel Permeation Chromatography (GPC) and its effect on the CO2/N2 perm-selectivity and CO2 permeance was investigated. The membrane that was polymerized at 80 °C (named R80) was selected as the best performing CMSM after a preliminary test. The post treatment with oxidative atmosphere was performed to increase the CO2 permeance and CO2/N2 perm-selectivity on membrane R80. The gas permeation results and Pore Size Distribution (PSD) measurements via perm-porometry resulted in selecting the membrane with an 80 °C polymerization temperature, 100 min of post treatment in 6 bar pressure and 120 °C with an oxygen concentration of 10% (named R80T100) as the optimum for enhancing the performance of CMSMs. The 3D laser confocal microscopy results confirmed the reduction in the surface roughness in post treatment on CMSMs and the optimum timing of 100 min in the treatment. CMSM R80T100 exhibiting CO2/N2 ideal selectivity of 194 at 100 °C with a CO2 permeability of 4718 barrier was performed higher than Robeson’s upper bound limit for polymeric membranes and also the other CMSMs fabricated in this work.The research has been carried out within the TTW Perspectief Program “Microsync” project number P16-10
    • …
    corecore