19 research outputs found

    Revealing Polylepis microphylla as a suitable tree species for dendrochronology and quantitative wood anatomy in the Andean montane forests

    Get PDF
    In the tropical Andes climate change is expected to increase temperatures and change precipitation patterns. To overcome the lack of systematic weather records that limits the performance of climate models in this region, the use of the environmental information contained in tree rings from tropical Andean species have been found useful to reconstruct spatio-temporal climate variability. Because classical dendrochronology based on ring-width patterns is often challenging in the tropics, alternative approaches such as Quantitative Wood Anatomy (QWA) based on the measurement and quantification of anatomical traits within tree rings can be a significant advance in the field. Here we assess the dendrochronological potential of Polylepis microphylla and its climate sensitivity by using i) classic dendrochronological methods to generate the first Tree-ring Width (TRW) chronology for this tree species spanning from 1965 to 2018; ii) radiocarbon (¹⁴C) analyses as an independent validation method to assess the annual periodicity of the tree growth layers; and iii) QWA to generate tree-ring annual records of the number (VN) and size (VS) of vessels to investigate the climate sensitivity of these anatomical traits. The annual periodicity in P. microphylla radial growth was confirmed by both dendrochronological and ¹⁴C analyses. We found that VN and VS are promising new proxies to reconstruct climate variability in this region and that they provide different information than TRW. While TRW provides information at inter-annual resolution (i.e., year-to-year variability), VN and VS generated with sectorial QWA provide intra-annual resolution for each stage of the growing process. The TRW and the anatomical traits (i.e., VN and VS) showed strong positive correlation with maximum temperature for different periods of the growing season: while VS is higher with warmer conditions prior to the growing season onset, tree-rings are wider and present higher number of vessels when warmer conditions occur during the current growing season. Our findings pointed out the suitability of P. microphylla for dendrochronological studies and may suggest a good performance of this species under the significant warming expected according to future projections for the tropical Andes.Fil: Rodríguez Morata, C.. Columbia University; Estados UnidosFil: Pacheco Solana, A.. Columbia University; Estados UnidosFil: Ticse Otarola, Ginette Vilma Alicia. Universidad Continental; Perú. Asociación ANDINUS; PerúFil: Boza Espinoza, T. E.. Pontificia Universidad Católica de Perú; PerúFil: Crispín-DelaCruz, D.B.. Universidad Federal Rural Pernambuco; Brasil. Universidad Continental; PerúFil: Santos, G. M.. University of California; Estados UnidosFil: Morales, Mariano Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Continental; PerúFil: Requena Rojas, Edilson Jimmy. Universidad Continental; PerúFil: Andreu Hayles, Laia. Institució Catalana de Recerca I Estudis Avançats; España. Consejo Superior de Investigaciones Científicas. Centre de Recerca Ecológica I Aplicacions Forestals; España. Columbia University; Estados Unido

    Impact of intra-annual wood density fluctuation on tree hydraulic function: Insights from a continuous monitoring approach

    No full text
    Climate change significantly impacts global forests, leading to tree decline and dieback. To cope with climate change, trees develop several functional traits, such as intra-annual density fluctuations (IADFs) in tree rings. The formation of these traits facilitates trees to optimize resource allocation, allowing them to withstand periods of stress and eventually recover when the conditions become favourable again. This study focuses on a Pinus pinaster Aiton forest in a warm, drought-prone Mediterranean area, comparing two growing seasons with different weather patterns. The innovative continuous monitoring approach used in this study combines high-resolution monitoring of sap flow (SF), analysis of xylogenesis and quantitative wood anatomy. Our results revealed the high plasticity of P. pinaster in water use and wood formation, shedding light on the link between IADFs and tree conductance. Indeed, the capacity to form large cells in autumn (as IADFs) improves the total xylem hydraulic conductivity of this species. For the first time, a continuous SF measurement system captured the dynamics of bimodal SF during the 2022 growing season in conjunction with the bimodal growth pattern observed through xylogenesis monitoring. These results highlight the intricate interplay between environmental conditions, water use, wood formation and tree physiology, providing valuable insights into the acclimation mechanisms employed by P. pinaster to cope with weather fluctuations

    Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands.

    No full text
    Mediterranean climate promotes two distinct growth peaks separated by summer quiescence in trees. This bimodal pattern has been associated to favourable growing conditions during spring and autumn when mild temperatures and soil-water availability enhance cambial activity. Climatic models predict progressive warming and drying for the Mediterranean Basin, which could shorten or shift the spring and autumn growing seasons. We explored this idea by comparing two sites with different Mediterranean climate types (continental/dry and coastal/wet) and studied how climate drives the bimodal growth pattern in Aleppo pine (Pinus halepensis). Specifically we investigated the intra-annual changes in wood anatomy and the corresponding formation of density fluctuations (IADF). Trees on both sites were analyzed by dendrometer monitoring and by developing chronologies of wood anatomical traits. Radial-increment dynamics followed a similar bimodal pattern in both sites but coastal trees showed higher increments during the spring and autumn growth peaks, especially in autumn. The summer rest of cambium activity occurs almost one month earlier in the coastal than in the inland site. Lumen area and cell-wall thickness were significantly smaller in the continental site, while the increment rate of cell-wall thickness during an IADF event was much higher in the coastal pines. The accumulated soil moisture deficit was the main climatic constraint of tracheid enlargement in continental pines. Intra-annual density fluctuations were more frequent in the coastal trees where wood anatomy features recover to average values after such events, meanwhile inland trees presented a much lower recovery rate. Growth bimodality and the formation of density fluctuations were linked, but mild climate of the coastal site allows a longer growing season, which explains why trees in this area showed higher and more variable growth rates

    Nutritional Content and Elemental and Phytochemical Analyses of Moringa oleifera Grown in Mexico

    No full text
    Moringa oleifera is a tree distributed in Mexican semiarid and coastal regions. M. oleifera is used in practice in the treatment of various diseases and is available without a medical prescription, often in the form of an herbal infusion for everyday use. The aim of the present study was to evaluate the chemical composition and nutritional values of dried M. oleifera leaf powder collected from two different regions in Mexico. All samples of M. oleifera exhibited moisture levels varying from 3.06 to 3.34%, lipids from 10.21 to 10.31%, fiber from 7.29 to 9.46%, ashes from 10.71 to 11.18%, crude protein from 10.74 to 11.48%, and carbohydrates from 54.61 to 57.61%. The predominant mineral elements in the leaf powder according to ICP-MS were Ca (2016.5–2620.5 mg/100 g), K (1817–1845 mg/100 g), and Mg (322.5–340.6 mg/100 g). The HPLC analysis indicated the presence of phenolic acids (gallic and chlorogenic acids) and flavonoids (rutin, luteolin, quercetin, apigenin, and kaempferol). We concluded that Lombardia M. oleifera samples could be employed in edible and commercial applications. Our results showed that the highest mean value of As from the San Pedro samples exceeds the recommended level and may constitute a health hazard to consumers

    Effects of Moringa oleifera Leaves Extract on High Glucose-Induced Metabolic Changes in HepG2 Cells

    No full text
    Mitochondrial dysfunction is a hallmark of diabetes, but the metabolic alterations during early stages of the disease remain unknown. The ability of liver cells to rearrange their metabolism plays an important role in compensating the energy shortage and may provide cell survival. Moringa oleifera leaves have been studied for its health properties against diabetes, insulin resistance, and non-alcoholic liver disease. We postulated that M. oleifera executes a protective function on mitochondrial functionality in HepG2 treated with high glucose. We evaluated the effect of high glucose treatment on the mitochondrial function of HepG2 cells using a Seahorse extracellular flux analyzer (Agilent, Santa Clara, CA, USA), blue native polyacrylamide gel electrophoresis (BN-PAGE), and western blot analysis. For assessment of mitochondrial abnormalities, we measured the activity of mitochondrial Complex I and IV as well as uncoupling protein 2, and sirtuin 3 protein contents. Our results demonstrate that, under conditions mimicking the hyperglycemia, Complex I activity, UCP2, Complex III and IV subunits content, supercomplex formation, and acetylation levels are modified with respect to the control condition. However, basal oxygen consumption rate was not affected and mitochondrial reactive oxygen species production remained unchanged in all groups. Treatment of HepG2 cells with M. oleifera extract significantly increased both protein content and mitochondrial complexes activities. Nonetheless, control cells’ respiratory control ratio (RCR) was 4.37 compared to high glucose treated cells’ RCR of 15.3, and glucose plus M. oleifera treated cells’ RCR of 5.2, this indicates high-quality mitochondria and efficient oxidative phosphorylation coupling. Additionally, the state app was not altered between different treatments, suggesting no alteration in respiratory fluxes. These findings enhance understanding of the actions of M. oleifera and suggest that the known antidiabetic property of this plant, at least in part, is mediated through modulating the mitochondrial respiratory chain

    Intra-annual density fluctuations in tree rings are proxies of air temperature across Europe

    Get PDF
    Abstract Intra-Annual Density Fluctuations (IADFs) are an important wood functional trait that determine trees’ ability to adapt to climatic changes. Here, we use a large tree-ring database of 11 species from 89 sites across eight European countries, covering a climatic gradient from the Mediterranean to northern Europe, to analyze how climate variations drive IADF formation. We found that IADF occurrence increases nonlinearly with ring width in both gymnosperms and angiosperms and decreases with altitude and age. Recently recorded higher mean annual temperatures facilitate the formation of IADFs in almost all the studied species. Precipitation plays a significant role in inducing IADFs in species that exhibit drought tolerance capability, and a growth pattern known as bimodal growth. Our findings suggest that species with bimodal growth patterns growing in western and southern Europe will form IADFs more frequently, as an adaptation to increasing temperatures and droughts

    Intra-annual density fluctuations in tree rings are proxies of air temperature across Europe

    Get PDF
    Intra-Annual Density Fluctuations (IADFs) are an important wood functional trait that determine trees' ability to adapt to climatic changes. Here, we use a large tree-ring database of 11 species from 89 sites across eight European countries, covering a climatic gradient from the Mediterranean to northern Europe, to analyze how climate variations drive IADF formation. We found that IADF occurrence increases nonlinearly with ring width in both gymnosperms and angiosperms and decreases with altitude and age. Recently recorded higher mean annual temperatures facilitate the formation of IADFs in almost all the studied species. Precipitation plays a significant role in inducing IADFs in species that exhibit drought tolerance capability, and a growth pattern known as bimodal growth. Our findings suggest that species with bimodal growth patterns growing in western and southern Europe will form IADFs more frequently, as an adaptation to increasing temperatures and droughts
    corecore