7,322 research outputs found

    Are Neutron-Rich Elements Produced in the Collapse of Strange Dwarfs ?

    Full text link
    The structure of strange dwarfs and that of hybrid stars with same baryonic number is compared. There is a critical mass (M~0.24M_sun) in the strange dwarf branch, below which configurations with the same baryonic number in the hybrid star branch are more stable. If a transition occurs between both branches, the collapse releases an energy of about of 3x10^{50} erg, mostly under the form of neutrinos resulting from the conversion of hadronic matter onto strange quark matter. Only a fraction (~4%) is required to expel the outer neutron-rich layers. These events may contribute significantly to the chemical yield of nuclides with A>80 in the Galaxy, if their frequency is of about one per 1500 years.Comment: Accepted for publication in IJMP

    Equilibrium configurations for quark-diquark stars and the problem of Her X-1 mass

    Get PDF
    We report new calculations of the physical properties of a quark-diquark plasma. A vacuum contribution is taken into account and is responsible for the appearance of a stable state at zero pressure and at a baryon density of about 2.2 times the nuclear matter density in this model. The resulting equation of state was used to integrate numerically the Tolman-Oppenheimer-Volkoff equations. The mass-radius relationship has been derived from a series of equilibrium configurations constituted by a mixture of quarks and diquarks. These stellar models, which are representative of a whole class, may be helpful to understand the possible compactness of the X-ray source Her X-1 and related objects.Comment: 15 pp., PlainTex file + 3 figures available upon request at [email protected]. Submitted to Int. Jour. Mod. Phys.

    A bright nanowire single photon source based on SiV centers in diamond

    Get PDF
    The practical implementation of many quantum technologies relies on the development of robust and bright single photon sources that operate at room temperature. The negatively charged silicon-vacancy (SiV-) color center in diamond is a possible candidate for such a single photon source. However, due to the high refraction index mismatch to air, color centers in diamond typically exhibit low photon out-coupling. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion efficiency to single SiV- centers, targeted to fabricated nanowires. The co-localization of single SiV- centers with the nanostructures yields a ten times higher light coupling efficiency than for single SiV- centers in bulk diamond. This enhanced photon out-coupling, together with the intrinsic scalability of the SiV- creation method, enables a new class of devices for integrated photonics and quantum science.Comment: 15 pages, 5 figure

    Double fermiophobic Higgs boson production at the LHC and LC

    Full text link
    We consider the phenomenology of a fermiophobic Higgs boson (h_f) at the Large Hadron Collider (LHC) and a e+e- Linear Collider (LC). At both machines the standard production mechanisms which rely on the coupling h_fVV (V=W,Z) can be very suppressed at large tan beta. In such cases the complementary channels pp to H^\pm h_f, A^0 h_f and e+e- to A^0 h_f offer promising cross-sections. Together with the potentially large branching ratios for H^\pm to h_fW* and A^0 to h_fZ*, these mechanisms would give rise to double h_f production, leading to signatures of gamma gamma gamma gamma, gamma gamma VV and VVVV.Comment: 19 pages, 9 figures, expanded discussion, fig.1 changed slightly, version to appear in Phys.Rev.

    Concrete retrofitting using CFRP and geopolymer mortars

    Get PDF
    A new development in the repair and strengthening of reinforced concrete systems is the use of carbon fiber reinforced polymers (CFRP) strips bonded to concrete substrate with epoxy resins. It has been reported that epoxy adhesive are extremely sensitive to high temperatures. Some authors conclude that the epoxy temperature should not exceed 70 ºC in order to safeguard the adhesiveness of the epoxy and, thus, the integrity and adequate functioning of CFRP. It is noted that even frequently exposure to direct sunlight causes temperatures higher than 70 ºC. Since geopolymers are known to possess high stability at high temperature, these materials can be an alternative to epoxy resins. This papers presents results about the use of metakaolin based geopolymers mortars to insure the adhesion between the CFRP and the concrete substrate. Several compositions of geopolymer mortars were executed by varying the percentage of binder, sand/binder ratio and the concentration of sodium hydroxide. It was found that geopolymer mortars demonstrate very promising performances, having obtained a high mechanical resistance and a good adhesion to concrete. On the other hand the adhesion between CFRP and geopolymer mortars proved to be smaller than expected which could be due, to the fact that the composition of the mortar was not optimized or even to the nature of the CFRP

    Route to Renewable PET: Reaction Pathways and Energetics of Diels–Alder and Dehydrative Aromatization Reactions Between Ethylene and Biomass-Derived Furans Catalyzed by Lewis Acid Molecular Sieves

    Get PDF
    Silica molecular sieves that have the zeolite beta topology and contain framework Lewis acid centers (e.g., Zr-β, Sn-β) are useful catalysts in the Diels–Alder and dehydrative aromatization reactions between ethylene and various renewable furans for the production of biobased terephthalic acid precursors. Here, the main side products in the synthesis of methyl 4-(methoxymethyl)benzene carboxylate that are obtained by reacting ethylene with methyl 5-(methoxymethyl)-furan-2-carboxylate are identified, and an overall reaction pathway is proposed. Madon–Boudart experiments using Zr-β samples of varying Si/Zr ratios clearly indicate that there are no transport limitations to the rate of reaction for the synthesis of p-xylene from 2,5-dimethylfuran and ethylene and strongly suggest no mass transport limitations in the synthesis of methyl p-toluate from methyl 5-methyl-2-furoate and ethylene. Measured apparent activation energies for these reaction-limited systems are small (<10.5 kcal/mol), suggesting that apparent activation energies are derived from a collection of parameters and are not true activation energies for a single chemical step. In addition, 13C kinetic isotope effects (KIE) in the synthesis of MMBC and MPT measured by gas chromatography/isotope-ratio mass spectrometry in reactant-depletion experiments support the Madon–Boudart result that these systems are not transport-limited and the KIE values agree with those previously reported for Diels–Alder cycloadditions

    Concrete retrofitting using metakaolin geopolymer mortars and CFRP

    Get PDF
    This paper presents results about the use of metakaolin based geopolymers mortars for retrofitting purposes. Two main situations are addressed, the use of geopolymeric mortars as a repairing layer or as a binding agent to insure the adhesion between CFRP sheets and the concrete substrate. Several compositions of metakaolin geopolymer mortars were executed by varying the percentage of sand/binder mass ratio and the concentration of sodium hydroxide. It was found that metakaolin geopolymer mortars show a high mechanical resistance and a relevant adhesion to the concrete substrate. Although their adhesion strength is lower than the one present by commercial pre-pack repair mortars, they are very cost-effective (5 to 10 times less expensive). On the other hand, the adhesion strength between CFRP and geopolymer mortars proved to be lower than expected which could be due to the fact that the composition of the geopolymeric mortars was not optimized and also to the fact that the CFRP used was not prone to this kind of application

    A comparative analysis of the observed white dwarf cooling sequence from globular clusters

    Get PDF
    We report our study of features at the observed red end of the white dwarf cooling sequences for three Galactic globular clusters: NGC\,6397, 47\,Tucanae and M\,4. We use deep colour-magnitude diagrams constructed from archival Hubble Space Telescope (ACS) to systematically investigate the blue turn at faint magnitudes and the age determinations for each cluster. We find that the age difference between NGC\,6397 and 47\,Tuc is 1.980.26+0.44^{+0.44}_{-0.26}\,Gyr, consistent with the picture that metal-rich halo clusters were formed later than metal-poor halo clusters. We self-consistently include the effect of metallicity on the progenitor age and the initial-to-final mass relation. In contrast with previous investigations that invoked a single white dwarf mass for each cluster, the data shows a spread of white dwarf masses that better reproduce the shape and location of the blue turn. This effect alone, however, does not completely reproduce the observational data - the blue turn retains some mystery. In this context, we discuss several other potential problems in the models. These include possible partial mixing of H and He in the atmosphere of white dwarf stars, the lack of a good physical description of the collision-induced absorption process and uncertainties in the opacities at low temperatures. The latter are already known to be significant in the description of the cool main sequence. Additionally, we find that the present day local mass function of NGC\,6397 is consistent with a top-heavy type, while 47\,Tuc presents a bottom-heavy profile.Comment: Accepted for publication in MNRAS (16 pages, 19 figures

    The Star-forming Region NGC 346 in the Small Magellanic Cloud with Hubble Space Telescope ACS Observations. II. Photometric Study of the Intermediate-Age Star Cluster BS 90

    Full text link
    We present the results of our investigation of the intermediate-age star cluster BS 90, located in the vicinity of the HII region N 66 in the SMC, observed with HST/ACS. The high-resolution data provide a unique opportunity for a very detailed photometric study performed on one of the rare intermediate-age rich SMC clusters. The complete set of observations is centered on the association NGC 346 and contains almost 100,000 stars down to V ~28 mag. In this study we focus on the northern part of the region, which covers almost the whole stellar content of BS 90. We construct its stellar surface density profile and derive structural parameters. Isochrone fits on the CMD of the cluster results in an age of about 4.5 Gyr. The luminosity function is constructed and the present-day mass function of BS 90 has been obtained using the mass-luminosity relation, derived from the isochrone models. We found a slope between -1.30 and -0.95, comparable or somewhat shallower than a typical Salpeter IMF. Examination of the radial dependence of the mass function shows a steeper slope at larger radial distances, indicating mass segregation in the cluster. The derived half-mass relaxation time of 0.95 Gyr suggests that the cluster is mass segregated due to its dynamical evolution. From the isochrone model fits we derive a metallicity for BS 90 of [Fe/H]=-0.72, which adds an important point to the age-metallicity relation of the SMC. We discuss our findings on this relation in comparison to other SMC clusters.Comment: Accepted for Publication in ApJ, 12 pages emulateapj TeX style, 10 figure
    corecore