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Abstract: The practical implementation of many quantum technologies relies on the development
of robust and bright single photon sources that operate at room temperature. The negatively
charged silicon-vacancy (SiV−) color center in diamond is a possible candidate for such a single
photon source. However, due to the high refraction index mismatch to air, color centers in
diamond typically exhibit low photon out-coupling. An additional shortcoming is due to the
random localization of native defects in the diamond sample. Here we demonstrate deterministic
implantation of Si ions with high conversion efficiency to single SiV− centers, targeted to
fabricated nanowires. The co-localization of single SiV− centers with the nanostructures yields a
ten times higher light coupling efficiency than for single SiV− centers in bulk diamond. This
enhanced photon out-coupling, together with the intrinsic scalability of the SiV− creation method,
enables a new class of devices for integrated photonics and quantum science.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

A practical source of indistinguishable single photons [1] is crucial for many quantum science
applications, including optical quantum computing [2] and many quantum repeater protocols [3,4].
An ideal single photon source must have a fast repetition rate, and also must be deterministic
or “on-demand”, with 100% probability of emitting a single photon and subsequent photons
being indistinguishable. Additionally, for practical implementations a single photon source
must be photostable at room temperature. Solid-state atom-like emitters are of great interest as
single photon sources for practical quantum optical devices [5], because they satisfy most of
the required characteristics and can be easily integrated with other nanophotonic devices in a
scalable way. In the past decade, color centers in diamond have emerged as particularly promising
candidates for practical single photon sources, due to their brightness and photostability at room
temperature. Many defects in diamond have been investigated, including Nickel-based NE8
centers [6], nickel-silicon complexes [7], Nitrogen-vacancy (NV) centers [8], and chromium-
related color centers [9]. The NV center is perhaps the most studied, due to its photostability and
unparalleled spin properties [8] relevant to many applications [10, 11]. Integration of the NV
center in nanophotonic structures created directly in diamond has also been demonstrated [12–16].
However, NV centers possess a broad fluorescence spectrum of about 100 nm linewidth at room
temperature, with only about 4% of their emission falling in the zero phonon line (ZPL), making
them very challenging to be used as a source of indistinguishable single photons.

In comparison, the negatively-charged silicon-vacancy (SiV−) center in diamond [17–31] has
been shown to be a more suitable candidate as a single photon source owing to its strong ZPL.
The SiV− center consists of an interstitial Silicon atom between two vacancies in the carbon
lattice. It is a bright source of indistinguishable single photons with the remarkable characteristic
of having 70% of its emission in the ZPL, with a width of 0.1 nm at low temperature (4 K). The
SiV− center also possesses an inversion symmetry, which leads to high spectral stability [22],
allowing creation of indistinguishable single photons from separate emitters [28]. SiV− defects
occur very rarely in natural diamonds, but can be purposely fabricated. Existing strategies to
create SiV− include silicon contamination during CVD growth process in diamond [19] or
etching structures in a hybrid diamond-silicon carbide material [32]. However, these techniques
give very low control of the location of individual SiV− centers. An alternative strategy exploits
ion implantation with a Focused Ion Beam (FIB) to achieve precise spatial localization of SiV−
defects [23]. FIB is used at low ion intensity to create high resolution secondary electron emission
images, and at high ion intensity to etch away material present on the surface of the sample. By
replacing the standard gallium ion source with a silicon ion source, FIB also allows creation
of SiV− centers with position accuracy of tens of nanometers in three dimensions [21]. Here
we report fabrication of monolithic nanowires [33] coupled to single SiV− centers created by
deterministic silicon ion implantation. We experimentally demonstrate that these nanostructures
achieve an increase in SiV− fluorescence photon count rate by a factor of ten with respect to
defects in bulk diamond; and also reduce the optical power needed to excite the color centers by
an order of magnitude.
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2. Design & fabrication of SiV defects in nanowires

To select the optimal geometry of nanowires, given constraints in both the fabrication and defect
creation, we first performed finite difference time domain (FDTD) simulations of a nanowire with
a single SiV− emitter of wavelength λ = 738 nm embedded in it. We estimated the total emission
of light coupled out from the nanowire in the vertical direction (assuming an air objective with a
numerical aperture NA=0.9 as in the experiments). We considered different configurations, by
varying the diameter of the nanowire and the position of the emitter therein. Due to practical
fabrication constraints, we chose a truncated cone structure (see Fig. 1(a)) instead of a cylindrical
structure, because less control is needed over the aspect ratio during etching. We simulated the
optical collection efficiency as a function of the nanowire bottom diameter for a few values of
the top diameter of the structure, obtaining an optimal value of 350 nm for the top and about
650 nm for the bottom diameter (see Fig. 1(b)). We also accounted for implantation constraints
that limit the maximum penetration of silicon ions in diamond given by the FIB energy to a
depth of 120 ± 26 nm. Accordingly, we simulated the emitter properties in the nanowire at a
depth of 120 nm below the surface and found that the best value for height, compatible with
fabrication constraints, is around 1 µm. Fig. 1(c) shows the emission enhancement as a function
of the nanowire height; in the fabrication, we achieved a nanowire height close to the optimal
value. We note that these non-resonant nanowires are not expected to yield a significant Purcell
enhancement [34].

Before performing deterministic creation and characterization of SiV− in the nanowires via our
implantation technique, we also tested an alternative strategy where nanowires were fabricated
in a sample already containing SiV− defects. We used a sample containing a high density of
SiV− color centers, which was previously characterized [22] in a different experiment where
we fabricated an array of Solid Immersion Lenses (SILs) in an area with high density of SiV−.
While the SILs could provide an enhancement of the detected light coupling by a factor of 10,
the minimum possible SIL size (' 1µm) is not suitable for applications to integrated optical
circuits. This limitation can be overcome by fabrication of nanowires that are only several hundred
nanometers in diameter. For such fabrication, we used a diamond sample with high purity: a
12C-enriched CVD layer grown on a low strain, type-IIa, high-pressure high-temperature (HTHP)
substrate. During the growth process a 6H-SiC single-crystal plate was used as a silicon source
to allow doping of the diamond [22]. Using a home-built confocal microscope, we characterized
the presence of uniformly distributed SiV− color centers in a 15 µm layer. In this sample we
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Fig. 1. (a) Simulation (FDTD Lumerical) of the intensity of the steady-state optical emission
from a single SiV− embedded in a nanowire (at a position of 120 nm from the nanowire top).
The emission intensity is given by the magnitude of the electrical field normalized to the
maximum emission. (b) Simulated dependence of nanowire collection efficiency on bottom
diameter, with the top diameter fixed at the optimal value (350 nm, see Appendix). The
collection efficiency was normalized to the collection efficiency of a dipole placed at the
same distance. Inset: SiV− atomic structure. (c) Simulated correlation between enhancement
due to the nanowire and position of a single photon emitter measured from the substrate, i.e.,
height of SiV− in nanowire.
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created a large array of nanowires [33] via electron-beam lithography and reactive-ion etching
(RIE) techniques (see Methods). This procedure has the distinct advantage that the implantation
step after the fabrication is avoided, with the potential to create large arrays of photon emitting
nanowires. However, this advantage comes at the cost of random positions of the SiV− in the
nanostructure. Indeed, we found it was extremely challenging to find a single SiV− emitter in a
nanowire and locate its position precisely, using this methodology. Due to the high concentration
of SiV− in the chosen region, out of 100 nanowires we found only one that contained a single
SiV− emitter. Moreover, the coupling of this single SiV− to the nanowire was not as good as we
expected, showing an increase in the emitted light intensity of only a factor of three compared to
a single SiV− in a bulk. We attribute this poor performance to a deeper location of the SiV− in
the diamond, below the nanostructure, or to a non-optimal position of the SiV− in the structure.
While a possible solution would be to repeat this fabrication strategy on a sample with very low
concentration of SiV−, this approach would void its main advantage (the simultaneous creation
of many nanowires containing photon emitters) since it would lead to a very low yield in the
realization of a nanostructure coupled to single SiV−.
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Fig. 2. Array of diamond nanowires containing SiV− color centers. (a,b) Secondary electron
emission images of the array of diamond nanowires studied in the present work. Each
nanowire has a 350 nm top diameter, 650 nm bottom diameter, and height of 1.2 µm.
(c) Confocal microscopy scan (15 × 15 µm2) of nanowire array after SiV− creation with
implantation dose of 20 ions/4.9ms. The bottom three rows of the array contain respectively
10(first row from the bottom), 7(second row) and 5 (third row) SiV− centers per nanowire,
while the other rows contain single or double SiV− per nanowire. The measured SiV−
fluorescence count rate shows a clear connection between the number of Si ions implanted
and the number of SiV− created. Pixel size is 200 nm; integration time per pixel is 50 ms;
point spread function is PSF' 1µm; and excitation laser power is PLaser = 10 mW.

Given these results, we therefore pursued an evolved version of the procedure introduced earlier:
by first fabricating the photonic structures and then creating defects in a quasi-deterministic
manner, we were able to achieve a high yield of nanowires containing single SiV− centers. We
used electron-beam lithography and RIE techniques to create a large array of nanowires, shown
in Fig. 2(a-b), in a pure type-IIa, HPHT diamond crystal without SiV−. Then, the image of the
fabricated arrays was used as a map to deterministically implant silicon ions [27]. Focused ion
implantation was performed at the Ion Beam Laboratory (IBL) at Sandia National Labs using
the nanoImplanter (nI). The nI is a 100 kV focused ion beam (FIB) machine (A&D FIB100nI)
with a three-lens system that is designed for high mass resolution using an E×B filter and single
ion implantation using fast beam blanking with beam diameters on target between 10 − 50 nm
depending on ion energy. The E×B filter has a resolution of > 61 (M/∆M) allowing the user
to select the ion, isotope, and energy via a variety of liquid metal alloy ions sources (LMAIS),
allowing for ion beams from ∼ 1/3 of the periodic table over a range of energies from 10 to
200 keV. The implanted ion dose can be controlled down to the single ion level using a fast
blanking and chopping system (minimum pulse width of 16 ns) or the external beam blanker.
The nI is a direct write lithography platform combining a Raith patterning system with a laser
interferometry-driven stage. The ion positioning is limited by the beam spot size on target
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Fig. 3. Characterization of single SiV− centers in nanowire (a) Second order autocorrelation
function g(2)(τ) fitting (in red) the raw coincidence rate of measured single SiV− fluorescence
from one nanowire, with time bin δ = 0.012 ns, total integration time of 10, 000 s, and laser
excitation power PLaser = 1 mW. (b) Spectra comparison for fluorescence from a single
SiV− in bulk diamond with linewidth ∆λ = 0.24 nm, and a single SiV− in a nanowire with
linewidth ∆λ = 0.1 nm, demonstrating SiV− spectral stability after implantation. A small
third spectral feature from the bulk SiV− results from reduced overlap of the C-line and
D-line due to strain in the bulk diamond. (c) Lifetime measurements for a single SiV− in a
nanowire at room and low (4 K) temperature, giving T1 values of, respectively, TRT

1 = 1.22
ns and TLT

1 = 1.73 ns.

convolved with the longitudinal and lateral ion straggle in the substrate. The beam was aligned
by using alignment markers via detection of secondary electrons from the ion irradiation itself,
thus avoiding the need to align the ion beam with the SEM. For implantations reported here, we
used a AuSbSi source to generate the Si beam. Typical beam currents range from 0.4 to 1 pA
with a spot size of < 40 nm. Silicon ions were implanted with an energy of 200 keV, giving an
estimated depth penetration in the nanowire of 120 nm. The dose of silicon ions was varied for
each row of the nanowire array, from 20 to 500 ions per spot, with lateral resolution of 30 nm.
High vacuum annealing was performed after the implantation process to repair lattice damage
and to facilitate the motion of vacancies toward the implanted silicon ions, leading to the creation
of single and multiple SiV− centers embedded in the nanowires. The implantation doses were
chosen to create from 1 to 8 SiV− per nanowire upon annealing above 800 C◦, with an estimated
conversion efficiency of 5%. We implanted a range of doses in order to obtain SiV− densities
ranging from small ensembles to single color centers in different rows of the pillars. This tailored
fabrication procedure is advantageous in providing a deterministic way to create a single SiV− in
the desired location, in this case within a nanowire. The main disadvantages of this approach,
besides involving an additional implantation step, is that the depth of the resulting SiV− defect is
directly determined by the implantation energy. Still, from our simulations we found that having
an emitter close to the nanowire top surface, instead of at its center, decreases the light collection
emission only by a factor of 15%.

3. Characterization of SiV defects in nanowires

To characterize the resulting SiV− defects, we measured non-classical light emission using a
home-built confocal microscope with a Hanbury-Brown Twiss (HBT) interferometer to record
the second order autocorrelation function g(2)(τ). In Fig. 2(c) we show a confocal microscopy
raster scan of the implanted array, showing varying intensity of the light collected from the
nanowires. In the bottom part of the scan we have the highest dose of implanted silicon ions
(500 Si per spot), which leads to a large ensemble of SiV− embedded in the nanowires and a
very high intensity of the light emission. In the upper part of the scan, the lowest implantation
dose (20 Si per spot) gave rise to single SiV− creation in the nanowires. Fig. 3(a) shows g(2)(τ)
measurements of these single SiV− defects displaying the typical antibunching behavior of a
single photon emitter. To evaluate these single SiV− g(2)(τ) results, the raw correlation data c(τ)
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was normalized and corrected in the following way. The raw coincidence rate c(τ), collected by
sweeping the time τ from 0 to T in steps of δ, was first normalized according to [35–37]:

g
(2)
exp(τ) =

c(τ)
N1N2Tδ

, (1)

where N1,2 are the count rates at each detector. The normalized coincidence function g
(2)
exp(τ)

differs from that of the theoretical second order autocorrelation function g(2)(τ) of a single emitter
according to the formula

g
(2)
exp(τ) = g(2)(τ)ρ2 + (1 − ρ2), (2)

where ρ = S
(S+B) was calculated from the signal (S) and background (B) rates, which were

determined independently during the measurement of the photon flux from a single SiV− in a
nanowire. In particular, the background is the count rate measured from an empty nanowire.
With this correction we could correctly determine the depth of the antibunching dip, thus
properly identifying single emitters. Finally, following the three-level system model discussed in
[17, 19, 38] we fit the data with the function:

g
(2)
exp(τ) = (1 − (1 + a)e−

|τ |
τ1 + ae−

|τ |
τ2 )ρ2 + (1 − ρ2). (3)

This fit includes three parameters a, τ1, and τ2 that determine the characteristics of the g(2)

function: τ1 governs the antibunching dip, whereas τ2 gives the time constant of the bunching,
and the parameter a determines the magnitude of the bunching.

We demonstrated the creation of single photon SiV− emitters in correspondence to the lowest
implantation doses (20 and 30 ions per spot), by observing the autocorrelation function minimum
g(2)(τ) < 0.5. In the nanowires with implantation doses corresponding to a value of 30 and 40 ions
per spot, we were also able to measure values of the autocorrelation function 0.5 < g(2)(τ) < 0.7,
indicating the presence of a double emitter. The average conversion yield from implanted Si to
SiV was about 2% [31].

Moreover in Fig. 3(c) we show the measured spectra at temperature T = 4 K for a single SiV−
in the nanowire and a single SiV− created by the same technique but in a bulk sample. This
measurement shows an almost perfect spectral overlap between the two emitters, which leads to
the conclusion that SiV− implantation in the nanowires does not affect the spectral stability of
the SiV−. This has been confirmed with a more detailed analysis in recent work [28,31]. We also
measured the lifetime of the excited state of a single SiV− in a nanowire at room temperature and
at low temperature (4 K) as shown in Fig. 3(d). The radiative decay lifetime of SiV− increases
from 1.22 ns at room temperature to 1.7 ns at 4 K, corresponding to a transform-limited PLE
linewidth of 94 MHz. These values are in good agreement with the values for bulk SiV− shown
in previous work [22, 25].
A crucial benefit of creating these nanostructures coupled to SiV− emitters is the increased

light out-coupling, as can be observed by comparing the photon flux from an individual SiV−
embedded in the nanowire to an individual SiV− emitter in the bulk crystal. While measuring
the absolute quantum yield is difficult, because not all the photons emitted by a defect can
be collected, we can evaluate the saturation intensity. The results, consistent with previous
studies [18,22,25], indicate a lower quantum efficiency than NV centers. We measured the count
rate of photons emitted by single SiV− centers as a function of the power of the excitation laser.
Fig. 4(a,b) shows the saturation curves, respectively, for a single SiV− in bulk and a single SiV−
in the nanowire. After a rise at low pump powers P, the intensity I of the light emitted from a
single SiV− saturates at a value (I = Isat ) corresponding to the saturation power (P = Psat ). This
bound in the emission rate is due to the quantum nature of the photon emitter, set by the SiV−
spontaneous decay rate. The emission intensity is a function of the laser power according to the
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formula [17]
I(P) = Isat

P
P + Psat

. (4)

We fitted the saturation curves for seven single SiV− centers coupled to nanowires and seven
single SiV− centers in bulk diamond to extract the saturation power and saturation intensity. The
resulting values (see Fig. 4(c)) show that the average saturation intensity for a single SiV− in a
nanowire is at least one order of magnitude higher than for a single SiV− in the bulk; and the
power needed to excite a single SiV− emitter in a nanowire is also at least an order of magnitude
lower than for a single SiV− in the bulk. Specifically, we obtained an average saturation intensity
for a single SiV− in a nanowire of 〈Isat〉 = 355 kcps. We further used this value to estimate the
number of SiV− in individual nanowires containing more than one or two emitters. The results
are shown in Fig. 4(d), where one can observe a clear correlation between the number of silicon
ions implanted in the nanowires and the estimated SiV− defect number, thus demonstrating that
it is possible to create a desired number of SiV− defects with very high accuracy.

4. Conclusions

In conclusion, we report the fabrication of bright sources of single photons from deterministically
implanted SiV− defects coupled to fabricated nanowires in diamond. We also demonstrated an
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Fig. 4. Single SiV− fluorescence rates in bulk diamond and nanowires. Measured fluorescence
rates as a function of laser excitation power for single SiV− centers in (a) bulk diamond and
(b) a nanowire. Open black squares are raw counts; hollow black triangles are background;
and filled red circles are normalized SiV− counts. Backgrounds were measured, respectively,
in an empty zone of the bulk with no SiV−, and in a nanowire not implanted with silicon
ions. (c) Single SiV− optical properties (Psat and Isat )) for several nanowires in the array
(red circles) compared to example single SiV− centers in the bulk (blue open circles).(d)
Estimated number of SiV− defects created per nanowire, determined from measured values
of Isat . Red circles indicate single SiV− centers.
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improvement in the photonic coupling of single SiV− emitters, thanks to the presence of the
nanowire. SiV− in nanowires are pumped ten times more efficiently than single SiV− in the bulk
and allow ten times higher single photon count rates. This result will enable a new class of devices
for integrated photonics and quantum information processing. One of the major advantages
offered by SiV− compared to other solid-state emitters arises from the inversion symmetry of the
SiV− defect, which leads to a stable single photon source immune to spectral diffusion, making
the SiV− an ideal candidate for integration into diamond nanophotonic structures. Our results,
in agreement with other recent works [28,31], indicate that this key characteristic is preserved
for SiV− defects implanted in photonic nanostructures. These results pave the way for more
complex experiments, e.g., exploiting quantum interference from multiple SiV− embedded in
nanostructures, paving the way toward scalable photonic quantum information devices.

Appendix

Device fabrication

The nanowires used in this experiment were prepared from a high purity diamond from Element
6. The diamond was cleaned in a boiling 1 : 1 peroxyde hydrogen (H2O2) and sulphuric (H2SO4)
acid bath at 100◦C, also known as piraña, for about 5 hours to remove surface contaminations. We
used thermal evaporation technique to deposit on the diamond a thin film of 10 nm of Titanium
and then we span on the sample FOx16 negative electron beam resist to form the photoresist
layer. The Arrays of nanowires were patterned using an Elionix electron-beam writing system at
dosage of 5400 µC cm−2 at energy of 100 KeV and intensity of 100pA. In order to develop the
resist and to form the etch mask we eventually used Tetra-methyl ammonium hydroxide (TMAH,
25%). The sample was then placed in an inductively coupled plasma (ICP) reactive ion etching
(RIE) system and etched for 5 second with 30 s.c.c.m. of ArCl gas 100W ICP power at a chamber
pressure of 10 mtorr. Then for 5 minutes of 1, 000W ICP power. Eventually the sample was
placed in hydrofluoric acid (HF) bath to remove the mask and then again in piraña for 5 hours to
remove the Titanium.

Measurement setup

To analyze photoluminescence measurement we used a home-built confocal microscope setup.
The excitation laser (532 nm) was focused through a microscope 100X air objective with
numerical aperture N A = 0.9. A dichroic mirror placed at 45 degree in the laser path separates
the fluorescence in the spectral range of 730 − 750 nm from reflected laser light . After further
suppressing any remaining laser light by dielectric filters, the fluorescence is coupled into a

S-polarized SiV

P-polarized SiV

Fig. 5. Simulation of the nanowire geometry showing the dependence of the simulated
collection efficiency from the nanowire diameter. Here we assumed the nanowires to be
cylindrical. We further optimized the geometry to match fabrication constraints as described
in the main text.
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multimode fibre that also serves as pinhole for the confocal setup. The light coming from
the sample is eventually directed to a Hanbury Brown-Twiss (HBT) setup which consists
of a 50 : 50 fiber splitter connected to two avalanche photodiodes detectors (Perkin Elmer
SPCM-AQR-WX-FC) to measure the intensity of the g(2) autocorrelation function.

Nanowire geometry

In the main text we showed how we selected the geometry of the nanowire, by using simulation to
determined the optimal bottom diameter of the pillar. The collection efficiency was first simulated
for a cylindrical nanowire, to determine the optimal range for the nanowire diameter (see Fig. 5).
We then fixed the top diameter to 350 nm and varied the bottom diameter to find an optimal value.
Varying the bottom diameter reflects the fabrication constraints that make it very challenging to
obtain cylindrical nanowires.
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