6,704 research outputs found
Metabolic and cardiovascular adaptation, monkey. NASA SMD 3, project 76, experiment 44 conducted at NASA/JSC, 14-25 May 1977
The biomedical results from an experiment on a monkey subjected to space flight conditions are reported. A background history of the development and testing of an experiment system designed to permit measurement of physiological parameters in subhuman primates during continuous, comfortable, couch restraint for periods of up to 30 days is reviewed. Of major importance in the experimental design of the system was the use of a fiberglass pod, which could be sealed and subdivided into upper and lower parts, to monitor and control the physiological responses for various parts of the animal's body. The experiment was conducted within the Spacelab Simulator for a period of 11 days. Data recorded includes: Spacelab Simulator cabin temperature; ventilation rate; pod internal temperature; fraction percent oxygen; fraction percent carbon dioxide; oxygen consumption rate; carbon dioxide production rate; respiratory quotient; intrathoracic temperature; heart rate; mean aortic pressure; mean ventricular pressure; diurnal variation of parameters measured; comparison of mean preflight, flight, and postflight values of the parameters measured; and correlation matrix for the parameters measured
Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation in Congenital Heart Disease
We propose an automatic method using dilated convolutional neural networks
(CNNs) for segmentation of the myocardium and blood pool in cardiovascular MR
(CMR) of patients with congenital heart disease (CHD).
Ten training and ten test CMR scans cropped to an ROI around the heart were
provided in the MICCAI 2016 HVSMR challenge. A dilated CNN with a receptive
field of 131x131 voxels was trained for myocardium and blood pool segmentation
in axial, sagittal and coronal image slices. Performance was evaluated within
the HVSMR challenge.
Automatic segmentation of the test scans resulted in Dice indices of
0.800.06 and 0.930.02, average distances to boundaries of
0.960.31 and 0.890.24 mm, and Hausdorff distances of 6.133.76
and 7.073.01 mm for the myocardium and blood pool, respectively.
Segmentation took 41.514.7 s per scan.
In conclusion, dilated CNNs trained on a small set of CMR images of CHD
patients showing large anatomical variability provide accurate myocardium and
blood pool segmentations
Electromechanical actuators affected by multiple failures: a simulated-annealing-based fault identification algorithm
The identification of early evidences on monitored parameters allows preventing incoming faults. Early alerts can avoid rate of the failures and trigger proper out-of-schedule maintenance activities. For this purpose, there are many prognostic approaches. This paper takes into account a primary flight command electromechanical actuator (EMA) with multiple failures originating from progressive wear and proposes a fault detection approach that identifies symptoms of EMA degradation through a simulated annealing (SA) optimization algorithm; in particular, the present work analyses the functioning of this prognostic tool in three different fault configurations and it focuses on the consequences of multiple failures. For this purpose, we developed a test bench and obtained experimental data necessary to validate the results originated from the model. Such comparison demonstrates that this method is affordable and able to detect failures before they occur, thus reducing the occurrence of false alarms or unexpected failures. © 2016, North Atlantic University Union. All rights reserved
Linear Electromechanical Actuators Affected by Mechanical Backlash: a Fault Identification Method Based on Simulated Annealing Algorithm
Several approaches can be employed in prognostics, to detect incipient failures of primary flight
command electromechanical actuators (EMA), caused by progressive wear. The development of a prognostic
algorithm capable of identifying the precursors of an electromechanical actuator failure is beneficial for the
anticipation of the incoming faults: a correct interpretation of the fault degradation pattern, in fact, can trig an
early alert of the maintenance crew, who can properly schedule the servomechanism replacement. The research
presented in this paper proposes a fault detection / identification technique, based on approaches derived from
optimization methods, able to identify symptoms of EMA degradation before the actual exhibition of the
anomalous behavior; in particular, the authors’ work analyses the effects due to progressive backlashes acting
on the mechanical transmission and evaluates the effectiveness of the proposed approach to correctly identify
these faults. An experimental test bench was developed: results show that the method exhibit adequate
robustness and a high degree of confidence in the ability to early identify an eventual fault, minimizing the risk
of false alarms or not annunciated failures
Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types
Aerosol optical depth and Ångström exponent were obtained from multi filter rotating shadowband radiometer (MFRSR) observations carried out at the island of Lampedusa, in the Central Mediterranean, in the period July 2001–September 2003. The average aerosol optical depth at 495.7 nm, τ, is 0.24±0.14; the average Ångström exponent, α, is 0.86±0.63. The observed values of τ range from 0.03 to 1.13, and the values of α vary from −0.32 to 2.05, indicating a large variability in aerosol content and size. In cloud-free conditions, 36% of the airmasses come from Africa, 25% from Central-Eastern Europe, and 19% from Western France, Spain and the North Atlantic. In summer, 42% of the airmasses is of African origin. In almost all cases African aerosols display high values of τ and low values of α, typical of Saharan dust (average values of τ and α are 0.36 and 0.42, respectively). Particles originating from Central-Eastern Europe show relatively large average values of τ and α (0.23 and 1.5, respectively), while particles from Western France, Spain and the North Atlantic show the lowest average values of τ (0.15), and relatively small values of α (0.92). Intermediate values of α are often connected with relatively fast changes of the airmass originating sector, suggesting the contemporary presence of different types of particles in the air column. Clean marine conditions are rare at Lampedusa, and are generally associated with subsidence of the airmasses reaching the island. Average values of τ and α for clean marine conditions are 0.11 and 0.86, respectively. The largest values of α (about 2) were observed in August 2003, when large scale forest fires in Southern Europe produced consistent amounts of fine combustion particles, that were transported to the Central Mediterranean by a persistent high pressure system over Central Europe. Smoke particles in some cases mix with desert dust, producing intermediate values of α. The seasonal distribution of the meteorological patterns over the Mediterranean, the efficiency of the aerosol production mechanisms, and the variability of the particles' residence time produce a distinct seasonal cycle of aerosol optical depths and Ångström exponent values. Particles originating from all sectors show a summer maximum in aerosol optical depth. The summer increase in optical depth for European aerosols is linked with an increment in the values of α, that indicates an enhancement in the number of fine particles. The summer maximum of τ for African particles is associated with a weak reduction in the Ångström exponent, suggesting an increase in the total number of particles and a relatively more intense transport of large particles. The observations were classified according to the aerosol optical properties, and two main classes have been identified: desert dust and biomass burning/urban-industrial aerosols. Values of τ and α averaged over the whole observing period are 0.37 and 0.15 for desert dust, and 0.27 and 1.77 for urban-industrial/biomass burning aerosols
Deep inelastic scattering and final state interaction in an exactly solvable relativistic model
In the theory of deep inelastic scattering (DIS) the final state interaction
(FSI) between the struck quark and the remnants of the target is usually
assumed to be negligible in the Bjorken limit. This assumption, still awaiting
a full validation within nonperturbative QCD, is investigated in a model
composed by two relativistic particles, interacting via a relativistic harmonic
oscillator potential, within light-cone hamiltonian dynamics. An
electromagnetic current operator whose matrix elements behave properly under
Poincar\'e transformations is adopted. It is shown that: i) the parton model is
recovered, once the standard parton model assumptions are adopted; and ii) when
relativistic, interacting eigenfunctions are exactly taken into account for
both the initial and final states, the values of the structure functions,
averaged over small, but finite intervals of the Bjorken variable , coincide
with the results of the parton model in the Bjorken limit.Comment: 26 pages, to appear in Phys. Rev. C (May 1998
Ammonium formate-Pd/C as a new reducing system for 1,2,4-oxadiazoles. Synthesis of guanidine derivatives and reductive rearrangement to quinazolin-4-ones with potential anti-diabetic activity
1,2,4-Oxadiazole is a heterocycle with wide reactivity and many useful applications. The reactive O-N bond is usually reduced using molecular hydrogen to obtain amidine derivatives. NH4 CO2 H-Pd/C is here demonstrated as a new system for the O-N reduction, allowing us to obtain differently substituted acylamidine, acylguanidine and diacylguanidine derivatives. The proposed system is also effective for the achievement of a reductive rearrangement of 5-(2′-aminophenyl)-1,2,4-oxadiazoles into 1-alkylquinazolin-4(1H)-ones. The alkaloid glycosine was also obtained with this method. The obtained compounds were preliminarily tested for their biological activity in terms of their cytotoxicity, induced oxidative stress, α-glucosidase and DPP4 inhibition, showing potential application as anti-diabetics
Study of coupling loss on bi-columnar BSCCO/Ag tapes by a.c. susceptibility measurements
Coupling losses were studied in composite tapes containing superconducting
material in the form of two separate stacks of densely packed filaments
embedded in a metallic matrix of Ag or Ag alloy. This kind of sample geometry
is quite favorable for studying the coupling currents and in particular the
role of superconducting bridges between filaments. By using a.c. susceptibility
technique, the electromagnetic losses as function of a.c. magnetic field
amplitude and frequency were measured at the temperature T = 77 K for two tapes
with different matrix composition. The length of samples was varied by
subsequent cutting in order to investigate its influence on the dynamics of
magnetic flux penetration. The geometrical factor which takes into
account the demagnetizing effects was established from a.c. susceptibility data
at low amplitudes. Losses vs frequency dependencies have been found to agree
nicely with the theoretical model developed for round multifilamentary wires.
Applying this model, the effective resistivity of the matrix was determined for
each tape, by using only measured quantities. For the tape with pure silver
matrix its value was found to be larger than what predicted by the theory for
given metal resistivity and filamentary architecture. On the contrary, in the
sample with a Ag/Mg alloy matrix, an effective resistivity much lower than
expected was determined. We explain these discrepancies by taking into account
the properties of the electrical contact of the interface between the
superconducting filaments and the normal matrix. In the case of soft matrix of
pure Ag, this is of poor quality, while the properties of alloy matrix seem to
provoke an extensive creation of intergrowths which can be actually observed in
this kind of samples.Comment: 20 pages 11 figure, submitted to Superconductor Science and
Technolog
Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting
Although universal continuous-variable quantum computation cannot be achieved
via linear optics (including squeezing), homodyne detection and feed-forward,
inclusion of ideal photon counting measurements overcomes this obstacle. These
measurements are sometimes described by arrays of beam splitters to distribute
the photons across several modes. We show that such a scheme cannot be used to
implement ideal photon counting and that such measurements necessarily involve
nonlinear evolution. However, this requirement of nonlinearity can be moved
"off-line," thereby permitting universal continuous-variable quantum
computation with linear optics.Comment: 6 pages, no figures, replaced with published versio
- …