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Abstract: - Several approaches can be employed in prognostics, to detect incipient failures of primary flight 

command electromechanical actuators (EMA), caused by progressive wear. The development of a prognostic 

algorithm capable of identifying the precursors of an electromechanical actuator failure is beneficial for the 

anticipation of the incoming faults: a correct interpretation of the fault degradation pattern, in fact, can trig an 

early alert of the maintenance crew, who can properly schedule the servomechanism replacement. The research 

presented in this paper proposes a fault detection / identification technique, based on approaches derived from 

optimization methods, able to identify symptoms of EMA degradation before the actual exhibition of the 

anomalous behavior; in particular, the authors’ work analyses the effects due to progressive backlashes acting 

on the mechanical transmission and evaluates the effectiveness of the proposed approach to correctly identify 

these faults. An experimental test bench was developed: results show that the method exhibit adequate 

robustness and a high degree of confidence in the ability to early identify an eventual fault, minimizing the risk 

of false alarms or not annunciated failures. 
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1 Introduction 
Actuators are devices capable of operate conversion 

of mechanical, electrical, hydraulic, or pneumatic 

power into mechanical power. In aircraft, actuators 

are commonly used for flight control surfaces and 

various utility systems. Flight control systems are 

considered flight critical and, although highly 

redundant, must meet reliability requirements of less 

than one catastrophic failure per 10
5
 flight hours for 

the F-18 strike fighter and one per 18x10
6
 flight 

hours for F-35AB [1]. Unanticipated and extreme 

operating scenarios are a major cause of 

unscheduled maintenance events, which may result 

into serious operational issues in terms of safety, 

mission completion, and cost. Often, when a 

monitor registers a fault, there is no information 

regarding the real cause and effect relationship 

between the failure mode and failure itself. All that 

is known is that a failure has occurred. Therefore, 

the identified need is for a robust health 

management solution capable of accurate and 

reliable early fault detection and failure prediction, 

covering multiple failure modes for flight control 

actuators (this is typically known as Prognostic and 

Health Management system or, in short, PHM) [2]. 

It must be noted that, typically, PHM is easier to 

implement on the electric actuators since no 

additional sensors are required, as the same sensors 

used to the control scheme and system monitors are 

also used in many PHM algorithms [2]. Enormous 

economic (maintenance and logistics) benefit is 

expected with the advance of the state of fault 

detection to failure prognosis for actuator systems, 

as high Can Not Duplicate (CND - inability to 

replicate field failures during lower level 

maintenance assessment) rates still plague many 

aircrafts. From collected field analyses, CND 

failures can make up more than 85% of all observed 

field failures in avionics and account for more than 

90% of all maintenance costs. These statistics can 

be attributed to a limited understanding of root 

cause failure characteristics of complex systems, 

inappropriate means of diagnosing the condition of 

the system, and the inability to duplicate the field 

conditions in the lower level test environment [3]. 

Since the prognostic activities typically involve 

systems having a complex non-linear 

multidisciplinary nature, the fault detection and 

evaluation strategies proposed in the literature are 

various and extremely different each other. 
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For instance, during these years have been proposed 

model-based techniques based upon the direct 

comparison between real and monitoring system [4], 

on the spectral analysis of well-defined system 

behaviors (typically performed by Fast Fourier 

Transform FFT) [5], on appropriate combinations of 

the first two methods [6-7] or on Artificial Neural 

Networks [8]. The present work reports the results 

of a research activity focused on the diagnosis 

model-based approach and, in particular, on the 

parametric estimation task, having as a primary 

objective the design of a modern and fast damage 

estimator routine for a simple electromechanical 

actuation system. In particular, it is centered on the 

improvement of a developing method through the 

possibility to consider effectively the impact of 

mechanical backlash (BLK). The paper starts with 

the presentation of the intended objectives (Section 

2), then provides an overview of the SA algorithm, 

used for the optimization (Section 3); Section 4 

describes the considered EMA system, which 

numerical model is provided in Section 5; finally, in 

Section 6, the proposed prognostic algorithm is 

described and validated through experimental data. 

 

2 Aims of Work 
The aim of this work is to improve the EMA 

Numerical Model proposed by the authors in [9] and 

develop it into a PHM approach able to consider the 

impact of backlash variations on the EMA behavior. 

The proposed fault detection/identification process 

is achieved through the following steps: 

1. define the optimization algorithm used for the 

parameter estimation task; 

2. set up a real actuation system meeting as much 

as possible the aeronautical requirements and 

being capable of responding to different types of 

signals (step, sinusoidal, random sequence, 

ramp) as well as recording significant data 

(velocities, position, current); 

3. build and validate a dedicated Matlab-Simulink 

numerical model of the considered actuation 

system (it must be noted that the aforesaid 

model, having to be run several times in the 

process of identification and evaluation of faults, 

must represent a compromise between the most 

reduced calculation effort and a satisfying 

representativeness of the actual EMA behaviors); 

4. simulate different EMA fault conditions; 

5. test the damage estimator in order to evaluate its 

speed and reliability on the simulated faulty 

response of the system. 

In particular, this paper shows the results obtained 

applying the proposed prognostic method to an 

EMA affected by different level of backlashes 

acting on the mechanical transmission. 

 

3 Optimization Algorithm 
Different optimization techniques are commonly 

used also for model parameter estimation tasks. 

They can be divided into two main groups: 

deterministic (direct or indirect) and probabilistic 

(stochastic, as Monte Carlo method, simulated 

annealing and genetic algorithms). Most methods, 

are local minima search algorithms and often do not 

find the global solution. As a result, they are highly 

dependent on good initial guesses. While this is a 

viable solution in an off-line scenario, where initial 

guesses can be reiterated, these approaches are not 

suitable for an on-line automated identification 

process because a good initial guess for one data set 

may not be for the next identification. These 

approaches would not be robust and may provide a 

false indication of parameter changes in an on-line 

system. Alternatively, global search methods, such 

as genetic algorithms (GA) and simulated annealing 

(SA), are much better options for on-line model 

identification [10-11]. However, similarly as the 

simplest methods, GA does not always find the 

global minima [12]. Simulated annealing methods 

are more effective at finding the global minima, but 

at the cost of many more iterations [2].  

The simulated annealing method originates, as 

the name suggests, from the study of thermal 

properties of solids (Metropolis et al. 1953 [13]). 

The Metropolis procedure was then an exact copy of 

the physical process which could be used to 

simulate a collection of atoms in thermodynamic 

equilibrium at a given temperature. In fact, the 

abstraction of this method in order to allow arbitrary 

problem spaces is straightforward. As reported in 

[14], there is a significant correlation between the 

terminology of thermodynamic annealing process 

(the behaviour of systems with many degrees of 

freedom in thermal equilibrium at a finite 

temperature) and combinatorial optimization 

(finding global minimum of a given function based 

on many parameters). A detailed analogy of 

annealing in solids provides frame work for 

optimization; in fact, the SA procedure copies the 

aforementioned physical process which could be 

used to simulate a collection of atoms in 

thermodynamic equilibrium at a given temperature. 

Indeed, the abstraction of this method in order to 

allow arbitrary problem spaces is straightforward. 

Table 1 shows the analogies between the physical 

process and the simulated one. 
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Table 1: Association between physical thermodynamic 

simulation and combinatorial optimization 

The operating logic of the SA algorithm and the 

way in which, at each iteration of calculation, it is 

evaluated the new state of the system (i.e. a new 

solution of the aforesaid optimization process) is 

schematically shown in Fig. 1 

 

Fig. 1: Operating Logic of SA Method. 

At a given temperature and energy, a new nearby 

geometry i + 1 is generated in each iteration as a 

random displacement from the current geometry i. 

The energy of the resulting new geometry is then 

computed and the energetic difference ∆E is 

determined with respect to preceding energy as: 

 (1) 

The probability that this new geometry will be 

accepted is: 

 
(2) 

                                                 
1  The cost of a solution represents the corresponding objective function 

value (i.e. the function that the optimization algorithm attempts to 

minimize in order to identify the optimal solution). 
2  A new system solution calculated by the optimization algorithm and 

evaluated, with respect to the previous one, using the said cost 

functions. 
3  The system parameters iteratively modified by the optimization 

process so as to minimize its objective function. 

This means that, if the new nearby geometry has 

a lower energy level (successful iteration), the 

transition is accepted. Otherwise (unsuccessful 

iteration), a uniformly distributed random number 

more or equal than 0 and less than 1 is drawn and 

the step will only be accepted in the simulation if it 

is less or equal the Boltzmann probability factor, i.e. 

r ≤ P (∆E). After a certain number of steps at the 

same temperature T, the latter is decreased 

following the specified cooling schedule scheme. It 

is worth noticing that the temperature does not take 

part directly to the optimization itself, but it acts 

merely as an exploration parameter. As at high 

temperatures T the factor P (∆E) is very close to 1, 

most likely many up-hill steps are accepted, even if 

they are unsuccessful. In this way, a wide 

exploration of the search space can be performed 

(this is the main feature of this algorithm). 

Subsequently, as the temperature falls off, the 

search is confined in a more limited space since 

Boltzmann factor P (∆E) collapses to very low 

values, thus decreasing the acceptance probability in 

case of ∆E > 0 (the algorithm becomes more 

selective). Finally, the global optimum should be 

found as soon as the temperature reaches its 

minimum value but, in practice, reannealing is 

performed, raising the temperature after a certain 

number of new points have been accepted so that 

the search starts again at the higher temperature. 

Basically, it avoids be caught in local minima [9]. 

 

4 Actuation System 
Until a few years ago, the actuators mainly used in 

aeronautical applications were generally hydraulic 

and precisely hydro-mechanical or, more recently, 

electrohydraulic. This kind of actuator, because of 

its great accuracy, high specific power and very 

high reliability, is often equipped on current 

aircrafts, even if on more modern airliners electro-

hydrostatic actuators (EHA) or electro-mechanical 

actuators (EMA) are installed. Especially in the last 

years, the trend towards the all-electric aircrafts 

brought to an extensive application of novel 

optimized electrical actuators, such as the 

electromechanical ones (EMA). To justify the 

fervent scientific activity in this field and the great 

interest shown by the aeronautical world, it must be 

noticed that, compared to the electrohydraulic 

actuations, the EMAs offer many advantages: 

overall weight is reduced, maintenance is simplified 

and hydraulic fluids, which is often contaminated, 

flammable or polluting, can be eliminated. 

Thermodynamic 

Annealing 

Combinatorial 

Optimization 

System State Feasible Solutions 

Energy of a State Cost of Solution
1
   

Change of state Neighbor solution
2
 

Temperature Control parameter
3
 

Minimum Energy Minimum Cost 
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As shown in Fig. 2, a typical EMA for primary 

flight control is composed by: 

1. an actuator control electronics (ACE) that closes 

the feedback loop, by comparing the commanded 

position (FBW) with the actual one, elaborates 

the corrective actions and generates the reference 

current Iref; 

2. a Power Drive Electronics (PDE) that regulates 

the three-phase electrical power; 

3. an electrical motor, often Brushless Direct 

Current (BLDC) type; 

4. a gear reducer having the function to decrease 

the motor angular speed (RPM) and increase its 

torque to desired values; 

5. a system that transforms rotary motion into linear 

motion: ball screws or roller screws are usually 

preferred to acme screws because, having a 

higher efficiency, they can perform the 

conversion with lower friction; 

6. a network of sensors used to close the feedback 

rings (current, angular speed and position) that 

control the whole actuation system (reported in 

Fig. 2, as RVDT). 

In order to evaluate the behavior of the proposed 

prognostic method in case of EMA progressive 

failures, the authors developed an experimental test-

bench [9]. By means of a tradeoff analysis among 

the available components, the different items 

composing the case study have been chosen: 

• MecVel ALI-2 (version M01) actuator, powered 

by a brushed DC electrical motor and equipped 

with 24 VDC brake and encoder (Fig. 3); 

• RoboteQ AX1500 controller (with encoder); 

• Acopian unregulated power; 

• RS-232 to USB converter. 

Subsequently to a proper stage of setup and 

calibration of the EMA control logic (selection of 

the proper PID gains and anti-windup filters), the 

actuation system was fully ready to operate. 

 

The abovementioned controller logic closes the 

control loops feeding the EM actuator with various 

type of input meaningful for the parameter 

estimation process (sinusoidal with/without linear 

frequency sweep, ramp, step and external 

commands, all of them both in open and closed 

loop). Every significant datum (RPM, rod position, 

controller current, motor power level, PID actions) 

could have been recorded and exported to Microsoft 

Excel or even to Matlab. 

 

 

5 EMA Numerical Model 
As previously reported, the subsequent step was to 

build an adequate Simulink model of the actuation 

system to be used as core of the damage estimator 

thus making it capable of recognizing the most 

representative actuator's failure modes according to 

some faulty experimental data achieved by the 

aforementioned software. In order to build an 

efficient model, two important (and often 

antithetical) aspects must be considered: the 

execution speed of the algorithm and the level of 

accuracy of the simulated results (with respect to the 

real ones). In the present work, a parameter 

estimation task is involved (as shown in previous 

sections) meaning that the numerical model will go 

through an optimization problem and thus the speed 

aspect must be privileged. The proposed numerical 

model is composed of six blocks representing the 

physical/functional components of the actual EMA. 

 
.

 

 
 

Fig. 2: Electromechanical actuator scheme. 

 

 

Fig. 3: Considered EMA actuator. 
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Fig. 4: Conceptual model scheme. 

 
Fig. 5: Block Diagram of EMA numerical model; it must be noted that the blocks that implement the nonlinearities 

considered – saturation of the motor torque (TMMm), dry friction phenomena, ends-of-travels (EoT) and global 

    mechanical backlash (BLK) acting on the final ballscrew actuator – are highlighted in the diagram by bold border. 

 

The Simulink model includes following blocks: 

• PID Control Logic (i.e. PID controller with 

saturated output and anti-windup); 

• Controller (simulating the RoboteQ AX1500 

controller behaviors); 

• Motor (simplified electro-magneto-mechanical 

model of the considered DC motor); 

• Gear box; 

• Ball screw; 

• Encoder. 

As shown in [8], every block has been modelled 

starting from its basic electromechanical equations, 

but since the objective is to achieve a model capable 

to recognize defined actuator faults (e.g. dry friction 

or mechanical backlash), it was decided to model in 

a suitably simplified way the electromagnetic 

aspects and focus instead on mechanical ones. 

The considered numerical model is developed from 

the monitoring model conceived by the authors for 

an EMA model-based prognostic application [6].  

The electro-magneto-mechanical dynamics of the 

BDC motor is simulated by means of a classic 

resistive-inductive (RL) numerical model.  

In particular, it is a 1
st
 order linear model capable 

of calculating the moving torque TM as a function 

of the motor torque gain GM, of its power supply 

voltage (Vdcm·I_ref), of the back-emf, of the 

dynamic characteristics of the RL circuit and of the 

saturation of magnetic induction flux.  

The dynamics of the mechanical actuation 

system (rotor of BCD motor, gear box and ball 

screw) is represented by a simplified 1 degree-of-

freedom system (obtained assuming an ideal rigid 

transmission without elastic deformations or 

backlashes). According to [6], it is modelled by 

means of a 2
nd

 order non-linear numerical model 

able to simulate the EMA behavior taking into 

account the global effects due to inertia, viscous 

damping, ball screw ends-of-travel and dry frictions. 

The dry friction torques acting on the EMA are 

simulated by a numerical algorithm implementing 

the classical Coulomb's model; this algorithm has 

been developed by means of a lumped parameter 

model based on the Karnopp friction model [15] and 

suitably modified as shown in [16]. The backlashes 

affecting the mechanical transmission, evaluated 

according to [17], have been simulated using a 

simplified approach by the backlash Simulink block. 

 

 

6 Proposed Prognostic Algorithm 
The outlined nonlinear third-order model can 

simulate the system response, taking into account 

both Coulomb friction and backlash, being then 

potentially able to reproduce seizure due to ball 

return jamming or bearing binding/sticking as well 

as the appearance of backlash in case of balls 

excessive wear. 
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Subsequently, its execution speed was tested in 

order to verify its suitability for optimization 

purposes. It must be noted that, despite being a 

relatively simplified numerical model, it shows a 

good accuracy, guaranteeing a satisfying 

correspondence with the experimental data (as 

reported in the following sections). The method 

performs the failure detection identification using an 

optimization process implemented by a simulated 

annealing algorithm; this process aims to minimize 

the value of appropriate objective functions 

(typically related to the magnitude of the error E(t) 

calculated comparing together experimental and 

numerical data) by acting on well-defined 

parameters of the numerical model. In particular, by 

means of simulated annealing algorithm, the 

optimization process modifies the parameter CSJ 

and BKL, respectively representative of the dry 

frictions and the mechanical backlashes globally 

acting on the EMA numerical model, in order to 

identify theirs values that minimize the 

abovementioned objective functions.  

It is clear that, in this case, the objective function 

of the optimization problem is the error generated, 

for a well-defined command input (Cmd pos), 

between the experimental data and the 

corresponding model output. Before verifying the 

actual ability of the proposed prognostic method to 

identify and evaluate failure precursors, the 

calibration of the numerical model parameters has 

been performed. The ideal values of these 

parameters have been identified by comparing the 

dynamic response of the real system in nominal 

conditions (NC: e.g. nominal dry friction and 

mechanical backlash levels and no other failures) 

with that generated by the numerical model, then, 

identifying the corresponding objective function 

(Eint) and, at last, applying the proposed 

optimization process to the above parameters. 

For instance, in Fig. 6 and 7 the experimental 

response of the EMA test bench is compared with 

the corresponding dynamic behaviors of the 

numerical model, putting clearly in evidence the 

best match that occurs (between experimental and 

simulated data) following of this calibration. In this 

case the command position input is constituted to a 

chirp signal shown in Fig. 6. It should be noted that 

the beneficial effects due to calibration can be 

appreciated more clearly by directly comparing the 

EMA rod position residuals obtained before and 

after optimization (as shown in Fig. 8). 

 

Fig. 6: EMA rod position before optimization. 

 

Fig. 7: EMA rod position after optimization. 

 

Fig. 8: Experimental vs simulated EMA rod position 

residuals before and after optimization. 
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The aforesaid model, properly calibrated in NC, was 

then used to estimate the global amount of the 

mechanical backlash acting on the real EMA; the 

dynamic response of the real EM actuation system 

(subjected to a well-defined system of backlashes 

affecting the mechanical transmission) is compared 

with that produced by the simulation model and, by 

means of the abovementioned optimization method, 

it is calculated the value of the parameter BLK
4
 that 

minimizes the error between real and simulated. 

The Simulated Annealing method used by the 

proposed prognostic routine to perform the fault 

estimation is implemented by means of Matlab 

Optimization Tool. It must be noted that these 

optimizations have been carried out in condition of 

unloaded actuator since, within an operational 

scenario, these kinds of tests could be performed on 

the ground, without any aerodynamic loads, but 

rather just with the control surface weight, which is 

usually negligible compared to the actuator's 

capabilities. The problem of what type of signal 

should have been used to test the optimization 

algorithm has not a precise solution and depends 

strongly by the system's application. In the case here 

examined, a sinusoidal linear frequency sweep wave 

was chosen as standard input position signal for the 

parameter estimation process. In fact, such a signal 

allows testing, at one time, a wide range of system 

response frequencies. For instance, in the low 

frequency range the stick-slip motion could be 

highlighted, enabling the optimization algorithm to 

finely tune the friction and backlash coefficients of 

the model and, at the same time, adapt the other 

parameters according also to the high frequency 

range, representing more significantly the system 

dynamic response. A simple step or ramp response 

could not comply with this necessity. In order to 

obtain accurate results and assure a suitable speed of 

convergence of the algorithm, the mechanical 

backlash BKL (which varies during the optimization 

process to minimize the error between experimental 

data and corresponding numerical simulations) has 

been limited between a lower and an upper bound 

(respectively LB and UB)
5
.  

                                                 
4  The parameter BLK takes into account the global effects of the 

backlashes affecting the EMA mechanical transmission by means of a 

very simplified model; in fact, the dynamic interactions between the 

different elements interested to the above mentioned backlashes are 

neglected. It is expressed in millimetres and represents the equivalent 

mechanical backlash (calculated as a sum of the backlash affecting 

the components of the transmission) acting on the whole EMA. 
5  Similar considerations, regarding the friction coefficient CSJ, have 

been already developed by the authors in [9]. 

To this purpose, it is necessary identify some 

meaningful value regarding the aforesaid backlash 

phenomenon. By reading the MecVel ALI-2 

maintenance handbook [18], it is possible to gain 

knowledge of the maximum acceptable backlash 

value of the ballscrew: 

 (5) 

where p is the ballscrew pitch (5 mm).  

For higher values of ∆b, the ballscrew should be 

replaced. Therefore the afore calculated backlash 

value can be considered as limit value and clearly it 

is very far from the healthy value related to the 

actual system. In this case, BLK can assume values 

from 0 [mm] (LB) to 0.1 [mm] (UB), which 

represent a quite large band given that the authors’ 

goal is the proposal of a prognostic method (that is 

able to perform an early identification of the 

considered progressive faults) and the actual value 

of the mechanical backlash (in healthy conditions) is 

worth about 0.033 [mm].  

Hence, it would be meaningful to increase the 

latter value by different percentage in order to test 

the algorithm's resolution and accuracy considering 

mechanical transmissions characterized to different 

fault magnitude (e.g. gears or screw suitably 

damaged) or modifying the experimental results in 

order to simulate the backlash effects. 

To this purpose, this research evaluates three 

cases of backlash severity: High: 0.066 [mm]; 

Moderate: 0.0495 [mm]; Low: 0.04125 [mm]. 

Different experimental tests have been conducted 

(with different time-history input and different 

levels of failure) that were then used as input to the 

optimization process performing the failure analysis.  

Figures 9 and 10 show the results gained by the 

authors in case of experimental system affected by a 

high mechanical backlash. Also in this case, the 

considered input is a position command evolving 

like a sinusoidal linear frequency sweep wave. 

It must be noted that, in this case, the difference 

between the EMA dynamic response after and 

before the SA optimization (shown in Fig. 9 and 10 

respectively), as well as the difference between the 

corresponding experimental (blue line signal called 

“High backlash”) and simulated (green line signal 

called “Model”) results are hardly detectable in 

these figures because the considered backlash 

values, even where particularly relevant, result 

nevertheless very small if compared to the 

corresponding amplitude of the EMA dynamic 

response. 

WSEAS TRANSACTIONS on SYSTEMS M. D. L. Dalla Vedova, D. Lauria, P. Maggiore, L. Pace

E-ISSN: 2224-2678 274 Volume 14, 2015



Figure 11 allows to overcome this shortcoming 

evaluating the effects of the SA optimization 

method (acting on the dynamic response of the 

numerical model) comparing together the EMA 

position residuals of the curves shown in Fig. 9 and 

10 (before and after SA optimization respectively): 

the blue curve reports the position residual 

calculated before optimization while the red curve 

puts in evidence how the SA optimization process, 

has significantly reduced the error between 

experimental and simulated data, increasing the 

accuracy of the numerical model with respect to the 

performance of the "faulty" test-bench. This means 

that the value of mechanical backlash estimated at 

the end of the optimization process is reasonably 

close to the corresponding real and that, at least for 

the considered typology of fault, this approach can 

be satisfactorily used to detect/identify the fault.  

Comparing the results obtained with the 

proposed method it is possible to notice how, in this 

case, the Simulated Annealing algorithm has found 

a good solution, estimating a global backlash value 

equal to 0.06613 [mm] (and, therefore, very close to 

the assumed experimental value of 0.066 [mm]). 

Considering all the data collected during the tests, it 

must be noted that these results are rather satisfying 

and the proposed fault detection algorithm is 

suitably able to estimate, with a small error, the 

varying parameters that represent the faults.  

These considerations are synthesized in Fig. 12 

by means of the diagnostic scalars (i.e. a histogram 

representing the SA results performed in case of 

high, moderate and low backlash). The diagnostic 

scalars compare each other the estimated and the 

actual values of the considered parameters (in this 

case the BKL and CSJ) putting in evidence the 

corresponding errors; these values are expressed as 

a percentage of the related nominal values (NC). 

These results could be used as input for a 

prognostic early fault identification algorithm 

which, associated with dedicated evolution models 

able to represent the progressive growth of the 

considered faults, allow estimating the Remaining 

Useful Life (RUL) of the system.  

Additional investigations, performed taking into 

account also the effects due to electrical noises, 

analog to digital conversion (ADC) problems, signal 

transducers affected by offsets or electrical drifts or 

(reasonable) variations of the boundary conditions, 

have put in evidence the robustness and the 

accuracy of this algorithm. 

 

 
 

 
 

 
 

 
Fig. 9: Experimental vs. simulated EMA position calculated 

before SA optimization. 

 
Fig. 10: Experimental vs. simulated EMA position calculated 

after SA optimization. 

 
Fig. 11: Experimental vs simulated EMA position residuals 

before and after SA optimization. 
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Fig. 12: Diagnostic scalars in case of EMA backlash. 

7 Conclusions 
A model-based damage estimator for an 

electromechanical actuation system has been 

developed and tested under different operational 

conditions using the Simulated Annealing (SA) 

optimization algorithm with a MATLAB Simulink 

model capable of reproducing the effects of 

progressive growth of mechanical backlash acting 

on transmission devices (this is simulated properly 

modifying the corresponding backlash coefficient 

BLK). The experimental data useful to demonstrate 

the damage estimator capabilities have been 

achieved by means of an electromechanical system 

developed for this purpose. This test-bench is able 

to feed the physical system with different type of 

signals (i.e. step, ramp, sinusoidal and generic 

external commands, both in open and closed loop 

mode), acquiring the position/speed response to a 

sinusoidal frequency sweep input which showed to 

be effective within the damage estimation process.  

The SA proved to be very effective, as its 

execution times were fairly acceptable (a few 

minutes) for an operational scenario. However, this 

method showed a strong dependence of the results 

on its initialization settings (i.e. initial temperature, 

function tolerance, reannealing interval) and also on 

the variables bounds which have to be chosen 

carefully, making, for example, some considerations 

regarding their physical limits. Also in this case, in 

view of the achieved results, this kind of damage 

estimator can be considered a very powerful tool for 

PHM applications. Hence its developing should be 

further improved. 
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