446 research outputs found
Projection effects in galaxy cluster samples: insights from X-ray redshifts
Up to now, the largest sample of galaxy clusters selected in X-rays comes
from the ROSAT All-Sky Survey (RASS). Although there have been many interesting
clusters discovered with the RASS data, the broad point spread function (PSF)
of the ROSAT satellite limits the amount of spatial information of the detected
objects. This leads to the discovery of new cluster features when a
re-observation is performed with higher resolution X-ray satellites. Here we
present the results from XMM-Newton observations of three clusters:
RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations
reveal a double or triple system of extended components. These clusters belong
to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample
(eeHIFLUGCS), which is a flux-limited cluster sample ( erg s cm in the keV energy band). For
each structure in each cluster, we determine the redshift with the X-ray
spectrum and find that the components are not part of the same cluster. This is
confirmed by an optical spectroscopic analysis of the galaxy members.
Therefore, the total number of clusters is actually 7 and not 3. We derive
global cluster properties of each extended component. We compare the measured
properties to lower-redshift group samples, and find a good agreement. Our flux
measurements reveal that only one component of the ZwCl1665 cluster has a flux
above the eeHIFLUGCS limit, while the other clusters will no longer be part of
the sample. These examples demonstrate that cluster-cluster projections can
bias X-ray cluster catalogues and that with high-resolution X-ray follow-up
this bias can be corrected
Constraining the intracluster pressure profile from the thermal SZ power spectrum
The angular power spectrum of the thermal Sunyaev-Zel'dovich (tSZ) effect is
highly sensitive to cosmological parameters such as sigma_8 and Omega_m, but
its use as a precision cosmological probe is hindered by the astrophysical
uncertainties in modeling the gas pressure profile in galaxy groups and
clusters. In this paper we assume that the relevant cosmological parameters are
accurately known and explore the ability of current and future tSZ power
spectrum measurements to constrain the intracluster gas pressure or the
evolution of the gas mass fraction, f_gas. We use the CMB bandpower
measurements from the South Pole Telescope and a Bayesian Markov Chain Monte
Carlo (MCMC) method to quantify deviations from the standard, universal gas
pressure model. We explore analytical model extensions that bring the
predictions for the tSZ power into agreement with experimental data. We find
that a steeper pressure profile in the cluster outskirts or an evolving f_gas
have mild-to-severe conflicts with experimental data or simulations. Varying
more than one parameter in the pressure model leads to strong degeneracies that
cannot be broken with current observational constraints. We use simulated
bandpowers from future tSZ survey experiments, in particular a possible 2000
deg^2 CCAT survey, to show that future observations can provide almost an order
of magnitude better precision on the same model parameters. This will allow us
to break the current parameter degeneracies and place simultaneous constraints
on the gas pressure profile and its redshift evolution, for example.Comment: Accepted for publication in A&
The XXL Survey: XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters
This article belongs to the first series of XXL publications. It presents
multifibre spectroscopic observations of three 0.55 sq.deg. fields in the XXL
Survey, which were selected on the basis of their high density of
X-ray-detected clusters. The observations were obtained with the
AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2m William
Herschel Telescope. The paper first describes the scientific rationale, the
preparation, the data reduction, and the results of the observations, and then
presents a study of active galactic nuclei (AGN) within three superclusters. We
obtained redshifts for 455 galaxies in total, 56 of which are counterparts of
X-ray point-like sources. We were able to determine the redshift of the merging
supercluster XLSSC-e, which consists of six individual clusters at z~0.43, and
we confirmed the redshift of supercluster XLSSC-d at z~0.3. More importantly,
we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters
also at z~0.3. We find a significant 2D overdensity of X-ray point-like sources
only around the supercluster XLSSC-f. This result is also supported by the
spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible
spectroscopic redshifts and possibly one more with compatible photometric
redshift. In addition, we find two AGN (3D analysis) at the redshift of
XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical
galaxy overdensity we conclude that the total number of AGN in the area of the
three superclusters significantly exceeds the field expectations. The
difference in the AGN frequency between the three superclusters cannot be
explained by the present study because of small number statistics. Further
analysis of a larger number of superclusters within the 50 sq. deg. of the XXL
is needed before any conclusions on the effect of the supercluster environment
on AGN can be reached.Comment: 11 pages, published by A&
The XMM-LSS survey: the Class 1 cluster sample over the extended 11 deg and its spatial distribution
This paper presents 52 X-ray bright galaxy clusters selected within the 11
deg XMM-LSS survey. 51 of them have spectroscopic redshifts
(), one is identified at , and all together make
the high-purity "Class 1" (C1) cluster sample of the XMM-LSS, the highest
density sample of X-ray selected clusters with a monitored selection function.
Their X-ray fluxes, averaged gas temperatures (median keV),
luminosities (median ergs/s) and total mass
estimates (median ) are measured, adapting to
the specific signal-to-noise regime of XMM-LSS observations. The redshift
distribution of clusters shows a deficit of sources when compared to the
cosmological expectations, regardless of whether WMAP-9 or Planck-2013 CMB
parameters are assumed. This lack of sources is particularly noticeable at . However, after quantifying uncertainties due to small
number statistics and sample variance we are not able to put firm (i.e. ) constraints on the presence of a large void in the cluster
distribution. We work out alternative hypotheses and demonstrate that a
negative redshift evolution in the normalization of the relation
(with respect to a self-similar evolution) is a plausible explanation for the
observed deficit. We confirm this evolutionary trend by directly studying how
C1 clusters populate the space, properly accounting for selection
biases. We point out that a systematically evolving, unresolved, central
component in clusters and groups (AGN contamination or cool core) can impact
the classification as extended sources and be partly responsible for the
observed redshift distribution.[abridged]Comment: 33 pages, 21 figures, 3 tables ; accepted for publication in MNRA
- …