446 research outputs found

    Projection effects in galaxy cluster samples: insights from X-ray redshifts

    Full text link
    Up to now, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function (PSF) of the ROSAT satellite limits the amount of spatial information of the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX,500≥5×10−12f_\textrm{X,500}\geq 5\times10^{-12} erg s−1^{-1} cm−2^{-2} in the 0.1−2.40.1-2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually 7 and not 3. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster-cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected

    Constraining the intracluster pressure profile from the thermal SZ power spectrum

    Full text link
    The angular power spectrum of the thermal Sunyaev-Zel'dovich (tSZ) effect is highly sensitive to cosmological parameters such as sigma_8 and Omega_m, but its use as a precision cosmological probe is hindered by the astrophysical uncertainties in modeling the gas pressure profile in galaxy groups and clusters. In this paper we assume that the relevant cosmological parameters are accurately known and explore the ability of current and future tSZ power spectrum measurements to constrain the intracluster gas pressure or the evolution of the gas mass fraction, f_gas. We use the CMB bandpower measurements from the South Pole Telescope and a Bayesian Markov Chain Monte Carlo (MCMC) method to quantify deviations from the standard, universal gas pressure model. We explore analytical model extensions that bring the predictions for the tSZ power into agreement with experimental data. We find that a steeper pressure profile in the cluster outskirts or an evolving f_gas have mild-to-severe conflicts with experimental data or simulations. Varying more than one parameter in the pressure model leads to strong degeneracies that cannot be broken with current observational constraints. We use simulated bandpowers from future tSZ survey experiments, in particular a possible 2000 deg^2 CCAT survey, to show that future observations can provide almost an order of magnitude better precision on the same model parameters. This will allow us to break the current parameter degeneracies and place simultaneous constraints on the gas pressure profile and its redshift evolution, for example.Comment: Accepted for publication in A&

    The XXL Survey: XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters

    Get PDF
    This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 sq.deg. fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2m William Herschel Telescope. The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z~0.43, and we confirmed the redshift of supercluster XLSSC-d at z~0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z~0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. The difference in the AGN frequency between the three superclusters cannot be explained by the present study because of small number statistics. Further analysis of a larger number of superclusters within the 50 sq. deg. of the XXL is needed before any conclusions on the effect of the supercluster environment on AGN can be reached.Comment: 11 pages, published by A&

    The XMM-LSS survey: the Class 1 cluster sample over the extended 11 deg2^2 and its spatial distribution

    Full text link
    This paper presents 52 X-ray bright galaxy clusters selected within the 11 deg2^2 XMM-LSS survey. 51 of them have spectroscopic redshifts (0.05<z<1.060.05<z<1.06), one is identified at zphot=1.9z_{\rm phot}=1.9, and all together make the high-purity "Class 1" (C1) cluster sample of the XMM-LSS, the highest density sample of X-ray selected clusters with a monitored selection function. Their X-ray fluxes, averaged gas temperatures (median TX=2T_X=2 keV), luminosities (median LX,500=5×1043L_{X,500}=5\times10^{43} ergs/s) and total mass estimates (median 5×1013h−1M⊙5\times10^{13} h^{-1} M_{\odot}) are measured, adapting to the specific signal-to-noise regime of XMM-LSS observations. The redshift distribution of clusters shows a deficit of sources when compared to the cosmological expectations, regardless of whether WMAP-9 or Planck-2013 CMB parameters are assumed. This lack of sources is particularly noticeable at 0.4≲z≲0.90.4 \lesssim z \lesssim 0.9. However, after quantifying uncertainties due to small number statistics and sample variance we are not able to put firm (i.e. >3σ>3 \sigma) constraints on the presence of a large void in the cluster distribution. We work out alternative hypotheses and demonstrate that a negative redshift evolution in the normalization of the LX−TXL_{X}-T_X relation (with respect to a self-similar evolution) is a plausible explanation for the observed deficit. We confirm this evolutionary trend by directly studying how C1 clusters populate the LX−TX−zL_{X}-T_X-z space, properly accounting for selection biases. We point out that a systematically evolving, unresolved, central component in clusters and groups (AGN contamination or cool core) can impact the classification as extended sources and be partly responsible for the observed redshift distribution.[abridged]Comment: 33 pages, 21 figures, 3 tables ; accepted for publication in MNRA
    • …
    corecore