1,828 research outputs found

    Carbon radio recombination lines from gigahertz to megahertz frequencies towards Orion A

    Get PDF
    Context. The combined use of carbon radio recombination lines (CRRLs) and the 158 μ\mum-[CII] line is a powerful tool for the study of the energetics and physical conditions (e.g., temperature and density) of photodissociation regions (PDRs). However, there are few observational studies that exploit this synergy. Aims. Here we explore the relation between CRRLs and the 158 μ\mum-[CII] line in light of new observations and models. Methods. We present new and existing observations of CRRLs in the frequency range 0.15--230 GHz with ALMA, VLA, the GBT, Effelsberg 100m, and LOFAR towards Orion~A (M42). We complement these observations with SOFIA observations of the 158 μ\mum-[CII] line. We studied two PDRs: the foreground atomic gas, known as the Veil, and the dense PDR between the HII region and the background molecular cloud. Results. In the Veil we are able to determine the gas temperature and electron density, which we use to measure the ionization parameter and the photoelectric heating efficiency. In the dense PDR, we are able to identify a layered PDR structure at the surface of the molecular cloud to the south of the Trapezium cluster. There we find that the radio lines trace the colder portion of the ionized carbon layer, the C+^{+}/C/CO interface. By modeling the emission of the 158158~μ\mum-[CII] line and CRRLs as arising from a PDR we derive a thermal pressure >5×107>5\times10^{7} K cm3^{-3} and a radiation field G0105G_{0}\approx10^{5} close to the Trapezium. Conclusions. This work provides additional observational support for the use of CRRLs and the 158 μ\mum-[CII] line as complementary tools to study dense and diffuse PDRs, and highlights the usefulness of CRRLs as probes of the C+^{+}/C/CO interface.Comment: 18 pages, 16 figures, accepted for publication in A&

    What is the clinical relevance of different lung compartments?

    Get PDF
    The lung consists of at least seven compartments with relevance to immune reactions. Compartment 1 - the bronchoalveolar lavage (BAL), which represents the cells of the bronchoalveolar space: From a diagnostic point of view the bronchoalveolar space is the most important because it is easily accessible in laboratory animals, as well as in patients, using BAL. Although this technique has been used for several decades it is still unclear to what extent the BAL represents changes in other lung compartments. Compartment 2 - bronchus-associated lymphoid tissue (BALT): In the healthy, BALT can be found only in childhood. The role of BALT in the development of the mucosal immunity of the pulmonary surfaces has not yet been resolved. However, it might be an important tool for inhalative vaccination strategies. Compartment 3 - conducting airway mucosa: A third compartment is the bronchial epithelium and the submucosa, which both contain a distinct pool of leukocytes (e.g. intraepithelial lymphocytes, IEL). This again is also accessible via bronchoscopy. Compartment 4 - draining lymph nodes/Compartment 5 - lung parenchyma: Transbronchial biopsies are more difficult to perform but provide access to two additional compartments - lymph nodes with the draining lymphatics and lung parenchyma, which roughly means "interstitial" lung tissue. Compartment 6 - the intravascular leukocyte pool: The intravascular compartment lies between the systemic circulation and inflamed lung compartments. Compartment 7 - periarterial space: Finally, there is a unique, lung-specific space around the pulmonary arteries which contains blood and lymph capillaries. There are indications that this "periarterial space" may be involved in the pulmonary host defense

    Effects of climate and land use on carbon and nutrients cycles control soil organic matter pools at Mount Kilimanjaro

    Get PDF
    Ecosystem functions of tropical mountain ecosystems and their ability to provide ecosystem services are particularly threatened by the combined impact of climate and land-use change. Soils, as the linkage between abiotic and biotic components of an ecosystem, are strongly affected by these changes. To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem Carbon (C) and nutrient fluxes are needed. Therefore, we quantitatively described cycles of C and major nutrients (N, P, K, Ca, Mg, Mn, Na, S) on pedon and stand level scale along a 3500 m elevation gradient and in up to three stages of land-use intensification. Qualitative indicators (composition of soil organic matter and microbial communities) were used to relate pool changes to underlying processes. Annual pattern of litterfall and decomposition were closely related to rainfall seasonality and temperature. Several factors, such as decomposition rate, C & N contents, microbial biomass (MBC) and leaf litter quality, increased at mid elevation. This was reflected in shifts of soil organic matter composition and microbial communities controlling soil C stability. Land-use intensification led to 40-80% losses in topsoil C and MBC contents as well as an increased turnover through higher microbial demand for new C sources. In ecosystems with strong seasonal variations (savanna and alpine helichrysum cushion) the effectiveness of C storage and N turnover was strongly affected by spatial vegetation heterogeneity. Ecosystems at mid elevation (~2000 m) represent the interception zone of optimal moisture and temperature conditions. High inputs and fast turnover control the C sequestration in these ecosystems, while climatic restrains on input and decomposition limit the C turnover in soils at lower and higher elevation. Land-use intensification increases C and nutrient cycling, decreases stabilization from new C inputs through increased microbial C demand and thus decreases soil C storage

    Streamflow and selected precipitation data for Yucca Mountain and vicinity, Nye County, Nevada, water years 1983--85

    Get PDF
    Streamflow and precipitation data collected at and near Yucca Mountain, Nevada, during water years 1983--85, are presented in this report. The data were collected and compiled as part of the studies the US Geological Survey is making, in cooperation with the US Department of Energy, to characterize surface-water hydrology in the Yucca Mountain area. Streamflow data include daily mean discharges and peak discharges at 4 complete-record gaging stations and peak discharges at 10 crest-stage, partial-record stations and 12 miscellaneous sites. Precipitation data include cumulative totals at 12 stations maintained by the US Geological Survey and daily totals at 17 stations maintained by the Weather Service Nuclear Support Office, National Oceanic and Atmospheric Administration

    Relationship between the unbinding and main transition temperatures of phospholipid bilayers under pressure

    Get PDF
    Using neutron diffraction and a specially constructed high pressure cell suitable for aligned multibilayer systems, we have studied, as a function of pressure, the much observed anomalous swelling regime in dimyristoyl- and dilauroyl-phosphatidylcholine bilayers, DMPC and DLPC, respectively. We have also reanalyzed data from a number of previously published experiments and have arrived at the following conclusions. (a) The power law behavior describing anomalous swelling is preserved in all PC bilayers up to a hydrostatic pressure of 240 MPa. (b) As a function of increasing pressure there is a concomitant decrease in the anomalous swelling of DMPC bilayers. (c) For PC lipids with hydrocarbon chains ≥13 carbons the theoretical unbinding transition temperature T* is coupled to the main gel-to-liquid crystalline transition temperature TM. (d) DLPC is intrinsically different from the other lipids studied in that its T* is not coupled to TM. (e) For DLPC bilayers we predict a hydrostatic pressure (>290MPa) where unbinding may occur

    Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome

    Get PDF
    Mutations in CCAAT/enhancer binding protein α (CEBPA) are seen in 5% to 14% of acute myeloid leukemia (AML) and have been associated with a favorable clinical outcome. Most AMLs with CEBPA mutations simultaneously carry 2 mutations (CEBPAdouble-mut), usually biallelic, whereas single heterozygous mutations (CEBPAsingle-mut) are less frequently seen. Using denaturing high-performance liquid chromatography and nucleotide sequencing, we identified among a cohort of 598 newly diagnosed AMLs a subset of 41 CEBPA mutant cases (28 CEBPAdouble-mut and 13 CEBPA single-mut cases) CEBPAdouble-mut associated with a unique gene expression profile as well as favorable overall and event-free survival, retained in multi-variable analysis that included cytoge-netic risk, FZT3-ITD and NPM1 mutation, white blood cell count, and age. In contrast, CEBPA single-mut AMLs did not express a discriminating signature and could not be distinguished from wild-type cases as regards clinical outcome. These results demonstrate significant underlying heterogeneity within CEBPA mutation-positive AML with prognostic relevance

    Lubrication at physiological pressures by polyzwitterionic brushes

    Get PDF
    The very low sliding friction at natural synovial joints, which have friction coefficients of mu < 0.002 at pressures up to 5 megapascals or more, has to date not been attained in any human-made joints or between model surfaces in aqueous environments. We found that surfaces in water bearing polyzwitterionic brushes that were polymerized directly from the surface can have m values as low as 0.0004 at pressures as high as 7.5 megapascals. This extreme lubrication is attributed primarily to the strong hydration of the phosphorylcholine-like monomers that make up the robustly attached brushes, and may have relevance to a wide range of human-made aqueous lubrication situations
    corecore