166 research outputs found

    Singleshot polychromatic coherent diffractive imaging with a high-order harmonic source

    Get PDF
    © 2020 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.Singleshot polychromatic coherent diffractive imaging is performed with a high-intensity high-order harmonic generation source. The coherence properties are analyzed and several reconstructions show the shot-to-shot fluctuations of the incident beam wavefront. The method is based on a multi-step approach. First, the spectrum is extracted from double-slit diffraction data. The spectrum is used as input to extract the monochromatic sample diffraction pattern, then phase retrieval is performed on the quasi-monochromatic data to obtain the sample’s exit surface wave. Reconstructions based on guided error reduction (ER) and alternating direction method of multipliers (ADMM) are compared. ADMM allows additional penalty terms to be included in the cost functional to promote sparsity within the reconstruction

    Synchrotron-based phase contrast imaging of cardiovascular tissue in mice-grating interferometry or phase propagation?

    Get PDF
    Synchrotron-based x-ray phase-contrast imaging allows for detailed 3D insight into the microstructure of soft tissue and is increasingly used to improve our understanding of mouse models of cardiovascular disease. Two techniques dominate the field: grating interferometry, with superior density contrast at mid to lower microscopic resolutions, and propagation-based phase contrast, facilitating high-resolution tissue imaging. The choice between these techniques depends on which features one is interested in visualizing and is thus highly sample-dependent. In this manuscript we systematically evaluate the advantages and disadvantages of grating interferometry and propagation-based phase contrast for the specific application of pre-clinical cardiovascular tissue. We scanned samples obtained from 5 different mouse models of cardiovascular disease, ranging from carotid plaques over ascending and abdominal aortic aneurysms to hypertrophic hearts. Based on our findings we discuss in detail how synchrotron-based imaging can be used to increase our understanding of the anatomy and biomechanics of cardiovascular disease in mice. We also present a flowchart that can help future users to select the best synchrotron-based phase contrast technique for their pre-clinical cardiovascular samples

    Circular Unit Cell Gratings for X-ray Dark-Field Imaging

    Full text link
    Dark-field imaging has been demonstrated to provide complementary information about the unresolved microstructure of the investigated sample. The usual implementation of a grating interferometer, which can provide access to the dark-field signal, consists of linear gratings limiting the sensitivity to only one direction (perpendicular to the grating lines). Recently, a novel grating design, composed of circular unit cells, was proposed allowing 2D-omnidirectional dark-field sensitivity in a single shot. In this work we present a further optimisation of the proposed grating by changing the arrangement of the unit cells from a Cartesian to a hexagonal grid. We experimentally compare the two designs and demonstrate that the latter has an improved performance

    X-ray in-line holography and holotomography at the NanoMAX beamline

    Get PDF
    Coherent X-ray imaging techniques, such as in-line holography, exploit the high brilliance provided by diffraction-limited storage rings to perform imaging sensitive to the electron density through contrast due to the phase shift, rather than conventional attenuation contrast. Thus, coherent X-ray imaging techniques enable high-sensitivity and low-dose imaging, especially for low-atomic-number (Z) chemical elements and materials with similar attenuation contrast. Here, the first implementation of in-line holography at the NanoMAX beamline is presented, which benefits from the exceptional focusing capabilities and the high brilliance provided by MAX IV, the first operational diffraction-limited storage ring up to approximately 300 eV. It is demonstrated that in-line holography at NanoMAX can provide 2D diffraction-limited images, where the achievable resolution is only limited by the 70 nm focal spot at 13 keV X-ray energy. Also, the 3D capabilities of this instrument are demonstrated by performing holotomography on a chalk sample at a mesoscale resolution of around 155 nm. It is foreseen that in-line holography will broaden the spectra of capabilities of MAX IV by providing fast 2D and 3D electron density images from mesoscale down to nanoscale resolution

    Acute Coronary Syndrome in the Older Patient

    Get PDF
    Coronary artery disease is one of the leading causes of morbidity and mortality, and its prevalence increases with age. The growing number of older patients and their differential characteristics make its management a challenge in clinical practice. The aim of this review is to summarize the state-of-the-art in diagnosis and treatment of acute coronary syndromes in this subgroup of patients. This comprises peculiarities of ST-segment elevation myocardial infarction (STEMI) management, updated evidence of non-STEMI therapeutic strategies, individualization of antiplatelet treatment (weighting ischemic and hemorrhagic risks), as well as assessment of geriatric conditions and ethical issues in decision making

    Online dynamic flat-field correction for MHz Microscopy data at European XFEL

    Full text link
    The X-ray microscopy technique at the European X-ray free-electron laser (EuXFEL), operating at a MHz repetition rate, provides superior contrast and spatial-temporal resolution compared to typical microscopy techniques at other X-ray sources. In both online visualization and offline data analysis for microscopy experiments, baseline normalization is essential for further processing steps such as phase retrieval and modal decomposition. In addition, access to normalized projections during data acquisition can play an important role in decision-making and improve the quality of the data. However, the stochastic nature of XFEL sources hinders the use of existing flat-flied normalization methods during MHz X-ray microscopy experiments. Here, we present an online dynamic flat-field correction method based on principal component analysis of dynamically evolving flat-field images. The method is used for the normalization of individual X-ray projections and has been implemented as an online analysis tool at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of EuXFEL.Comment: 14 pages, 7 figure

    The CAMELS Project: Public Data Release

    Get PDF
    The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N-body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Lyα spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 catalogs that contain billions of galaxies from CAMELS-SAM: a large collection of N-body simulations that have been combined with the Santa Cruz semianalytic model. We release all the data, comprising more than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies, and summary statistics. We provide further technical details on how to access, download, read, and process the data at https://camels.readthedocs.io

    Ultrasound cavitation and exfoliation dynamics of 2D materials re-vealed in operando by X-ray free electron laser megahertz imaging

    Full text link
    Ultrasonic liquid phase exfoliation is a promising method for the production of two-dimensional (2D) layered materials. A large number of studies have been made in investigating the underlying ultrasound exfoliation mechanisms. However, due to the experimental challenges for capturing the highly transient and dynamic phenomena in real-time at sub-microsecond time and micrometer length scales simultaneously, most theories reported to date still remain elusive. Here, using the ultra-short X-ray Free Electron Laser pulses (~25ps) with a unique pulse train structure, we applied MHz X-ray Microscopy and machine-learning technique to reveal unambiguously the full cycles of the ultrasound cavitation and graphite layer exfoliation dynamics with sub-microsecond and micrometer resolution. Cyclic fatigue shock wave impacts produced by ultrasound cloud implosion were identified as the dominant mechanism to deflect and exfoliate graphite layers mechanically. For the graphite flakes, exfoliation rate as high as ~5 angstroms per shock wave impact was observed. For the HOPG graphite, the highest exfoliation rate was ~0.15 angstroms per impact. These new findings are scientifically and technologically important for developing industrial upscaling strategies for ultrasonic exfoliation of 2D materials
    • …
    corecore