541 research outputs found

    Internal framework and geochemistry of the Carboniferous Huaco granite pluton, Sierra de Velasco, NW Argentina

    Get PDF
    The A-type Huaco granite pluton of the Velasco range (Sierras Pampeanas of northwest Argentina) is formed by three coeval granitic facies and contains subordinate coeval-to-late facies, as well as enclaves, dikes and stocks that show different temporal relations, textures and compositions. The dominant facies (Regional Porphyritic Granite; RPG) is a porphyritic two-mica monzo- to syenogranite, with abundant microcline megacrysts up to 12 cm in size. It was emplaced in a dominant extensional setting and has a mainly crustal source but with participation of a mantle-derived component. The RPG transitions towards two coeval and co-genetic granite facies, at its margins (Border Granite; BG) and around Be-pegmatites (Adjacent Porphyritic Granite; APG). These two facies have a finer-grained texture and smaller and less abundant megacrysts. They are also monzo- to syenogranites, but a slight decrease in the biotite/muscovite ratio is observed from the BG to the RPG to the APG. Trace element modeling suggests that the RPG, BG and APG differentiated from the same magma source by fractional crystallization. Temporally older mafic (ME) and felsic (FE) enclaves are common in the pluton. The ME can be considered partially assimilated remnants of a mafic component in the genesis of the RPG, whereas the FE seem to be remnants of premature aplites. Other subordinate rocks intrude the RPG and are, hence, temporally younger: felsic dikes (FD), dioritic dikes (DD) and equiganular granites (EqG) are clearly posterior, whereas coeval-to-late Be-pegmatites (BeP) and orbicular granites (OG) formed during the final stages of crystallization of the pluton. The BeP, OG and FD indicate the presence of abundant water and volatiles. The EqG form small stocks that intrude the RPG and were possibly originated from purely crustal sources. The DD probably correspond to a younger unrelated episode of mafic magmatism.Fil: Sardi, Fernando Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; ArgentinaFil: Grosse, Pablo. Fundación Miguel Lillo. Dirección de Geología. Instituto de Minerología y Petrografia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Murata, Mamoru. Naruto University; JapónFil: Lozano Fernández, Rafael Pablo. Instituto Geológico y Minero de España; Españ

    NETVOLC: An algorithm for automatic delimitation of volcano edifice boundaries using DEMs

    Get PDF
    Accurately delimiting boundaries is required for characterizing landforms through measurement of their geomorphometric parameters. Volcanism produces a wide range of landforms, from symmetric cones to very irregular massifs, that can gradually merge with the surroundings and contain other elements, thus complicating landform delimitation. Most morphometric studies of volcanoes delimit landforms manually, with the inconvenience of being time-consuming and subjective. Here we propose an algorithm, NETVOLC, for automatic volcano landform delimitation based on the premise that edifices are bounded by concave breaks in slope. NETVOLC applies minimum cost flow (MCF) networks for computing the best possible edifice outline using a DEM and its first- and second-order derivatives. The main cost function considers only profile convexity and aspect; three alternative functions (useful in complex cases) also consider slope, elevation and/or radial distance. NETVOLC performance is tested by processing the Mauna Kea pyroclastic cone field. Results using the main cost function compare favorably to manually delineated outlines in 2/3rds of cases, whereas for the remaining 1/3rd of cases an alternative cost function is needed, introducing some degree of subjectivity. Our algorithm provides a flexible, objective and time-saving tool for automatically delineating volcanic edifices. Furthermore, it could be used for delineating other landforms with concave breaks in slope boundaries. Finally, straightforward modifications can be implemented to extend the algorithm capabilities for delimiting landforms bounded by convex breaks in slope, such as summit craters and calderas.Fil: Euillades, Leonardo Daniel. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; ArgentinaFil: Grosse, Pablo. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Euillades, Pablo Andrés. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; Argentin

    Non-pegmatitic beryl related to Carboniferous granitic magmatism, Velasco Range, Pampean Province, NW Argentina

    Get PDF
    The specialized leuco-monzogranite of the La Chinchilla Stock is a small Carboniferous stock located in the center of the Velasco Range, Pampean Province, La Rioja, Argentina. It is highly evolved and locally F- and Be-bearing, and has the potential for hosting U mineralization. Three different facies can be identified in the granitoid: border, porphyritic and equigranular facies. In all three facies the main minerals are quartz, microcline, plagioclase, biotite, and muscovite. Accessory minerals present in all facies include fluorite, zircon, and apatite. In addition, monazite, rutile, and uraninite occur as accessory minerals in the equigranular facies. Secondary minerals are muscovite, sericite, kaolinite, and opaque minerals. Secondary uranophane occurs in the equigranular and border facies. In localized areas, the equigranular facies contains small, green idiomorphic crystals of beryl (Be3Al2Si6O18) as accessory mineral. One of these beryl crystals was chemically analyzed for major and minor element contents using an electron microprobe and this information, along with fractional crystallization models and comparison with compositions of non-pegmatitic beryl from the literature, were used to understand the degree of evolution of the granitic melt. The chemical formula of beryl from the La Chinchilla Stock can be written as: C(Na0.014-0.033, K0.001-0.002, Ca0.001-0.004) T(2)(Be2.978-2.987, Li0.016-0.022) O(Al1.889-1.967, Fe0.045-0.103, Mg0.001-0.007, Mn0.001-0.007) T(1)(Si5.994-6.040O18). The alkali contents are low (Na2O6; FeOt<1.27 wt%). In a longitudinal geochemical profile, Al enrichment is observed at the border while the highest Na content is found in an internal point. In a transversal geochemical profile, the highest concentration of Al is seen in an internal point while Na remains almost invariable. Ferromagnesian elements vary randomly within the crystal. This indicates compositional changes in the magma for Al, ferromagnesian elements, and Na. The FeOt content of the analyzed beryl is within the compositional range of other disseminated beryl from granitoids but slightly higher than that of beryl from hydrothermal veins and greisens. It contains similar to slightly lower amounts of FeOt, MgO, and Na2O than beryl from medium to little evolved granitic pegmatites. Overall, the composition of beryl in the La Chinchilla Stock is quite similar to that from medium to poorly evolved granitic pegmatites of the nearby Velasco Pegmatite District. The formation of beryl in the La Chinchilla Stock is attributed to precipitation from a F-bearing, highly fractionated, Al- and Si-rich melt saturated in BeO. A fractional crystallization model using Rb and Ba suggests that the beryl-hosting rock crystallized from the parent melt after extreme fractionation and 75% crystallization. The occurrence of beryl as a magmatic accessory mineral in the equigranular facies of the La Chinchilla Stock is indicative of a very high degree of fractionation of the parental magma

    La Horqueta Shear Zone, Sierra de Velasco, NW Argentina: petrography, geochemistry, structures and tectonic significance

    Get PDF
    La Faja de Deformación La Horqueta (FDLH) es la sexta faja de cizalla reconocida en la sierra de Velasco, Sierras Pampeanas, NO de Argentina. Esta faja separa dos tipos de metagranitoides de características petrográficas y geoquímicas contrastadas: metagranodioritas, hacia el SO, consisten en granodioritas con biotita-allanita-titanita débilmente peraluminosas que se asemejan a los granitoides tipo I del sur de la sierra de Velasco y de sierras aledañas pertenecientes al arco magmático famatiniano, mientras que los metagranitos, hacia el NE, consisten en monzogranitos con biotita-muscovita fuertemente peraluminosos idénticos al Ortogneis Antinaco del norte de la sierra de Velasco, el cual pertenece a un cinturón de granitoides tipo S interno, respecto del arco famatiniano. La FDLH, desarrollada a partir de estos dos protolitos, tiene un espesor de 1 a 2 km y está compuesta por protomilonitas y milonitas que desarrollan una fuerte foliación milonítica de rumbo NNO y fuerte inclinación al E. El análisis cinemático indicaría un régimen deformacional transpresivo principal con componente inverso-sinestral, acompañado por una componente de transcurrencia destral N-S subordinada, que habría puesto en contacto ambos ambientes geotectónicos.The La Horqueta Shear Zone (LHSZ) is the sixth shear zone recognized in the Sierra de Velasco, Sie- rras Pampeanas, NW Argentina. This shear zone separates two types of metagranitoids of contrasting petrographical and geochemical characteristics: metagranodiorites, outcropping towards the SW, consist in weakly peraluminous biotite-allanite-titanite granodiorites similar to the I-type granitoids of southern Sierra de Velasco and of neighboring ranges that are part of the Famatinian magmatic arc, while metagranites, outcropping towards the NE, consist of strongly peraluminous biotite-muscovite monzogranites identical to the Antinaco Orthogneis of northern Sierra de Velasco, which is part of an inner S-type granitoid belt. The LHSZ, developed from these two protoliths, has a thickness of 1 to 2 km and is composed of protomyloni- tes and mylonites with strong NNW trending and E dipping mylonitic foliation. Cinematic analysis indicates a main transpressive deformational regime with an inverse-sinistral component, accompanied by a subordi- nate dextral transcurrent component, which possibly placed the two tectonic settings in contact.Fil: López, J. P.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; ArgentinaFil: Grosse, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentina. Fundación Miguel Lillo; ArgentinaFil: Toselli, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentin

    Mapping of long-term cognitive and motor deficits in pediatric cerebellar brain tumor survivors into a cerebellar white matter atlas

    Get PDF
    Purpose: Diaschisis of cerebrocerebellar loops contributes to cognitive and motor deficits in pediatric cerebellar brain tumor survivors. We used a cerebellar white matter atlas and hypothesized that lesion symptom mapping may reveal the critical lesions of cerebellar tracts. Methods: We examined 31 long-term survivors of pediatric posterior fossa tumors (13 pilocytic astrocytoma, 18 medulloblastoma). Patients underwent neuronal imaging, examination for ataxia, fine motor and cognitive function, planning abilities, and executive function. Individual consolidated cerebellar lesions were drawn manually onto patients' individual MRI and normalized into Montreal Neurologic Institute (MNI) space for further analysis with voxel-based lesion symptom mapping. Results: Lesion symptom mapping linked deficits of motor function to the superior cerebellar peduncle (SCP), deep cerebellar nuclei (interposed nucleus (IN), fastigial nucleus (FN), ventromedial dentate nucleus (DN)), and inferior vermis (VIIIa, VIIIb, IX, X). Statistical maps of deficits of intelligence and executive function mapped with minor variations to the same cerebellar structures. Conclusion: We identified lesions to the SCP next to deep cerebellar nuclei as critical for limiting both motor and cognitive function in pediatric cerebellar tumor survivors. Future strategies safeguarding motor and cognitive function will have to identify patients preoperatively at risk for damage to these critical structures and adapt multimodal therapeutic options accordingly

    Volcanismo

    Get PDF
    La Puna es una región volcánica activa que forma parte de la Zona VolcánicaCentral de los Andes. Contiene tres tipos principales de volcanes: (1) Estratovolcanes: edificios generados por la acumulación de productos volcánicos durante un período de tiempo prolongado. Presentan variada morfología desde conos simples a macizos complejos. Sus productos, mayormente de composición andesítica y dacítica, consisten en coladas de lava, domos de lava y en menor medida depósitos piroclásticos. (2) Calderas de colapso: depresiones generadaspor grandes erupciones asociadas al vaciamiento de cámaras magmáticas. Producenextensos depósitos de flujos piroclásticos (ignimbritas) de composiciones mayormente dacíticas y riolíticas. (3) Conos de escoria y coladas de lava asociadas: producidos por volcanismo monogenético, de corta duración y escaso volumen; de composiciones mayormente andesitas basálticas. El volcanismo en la Puna tiene registros a partir de ~26 Ma, cobrando intensidad desde los ~15 Ma hasta el presente. Entre los ~15-8 Ma se construyeron numerosos estratovolcanes y calderas, principalmente a lo largo de lineamientos transversales NO-SE y en el borde oriental de la Puna. Entre los ~8-3 Ma el arco volcánico principal se estableció en su posición actual sobre el borde occidental de la Puna, con el desarrollo de estratovolcanes, mientras que calderas y centros máficos se generaron en el retroarco. La construcción de estratovolcanes sobre el arco principal continuó durante el Cuaternario y persiste en la actualidad.En el interior de la Puna la actividad cuaternaria se limitó a la Puna austral, con el desarrollo de centros máficos y tres calderas.Fil: Grosse, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Miguel Lillo. Dirección de Geología. Instituto de Minerología y Petrografia; ArgentinaFil: Guzman, Silvina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina. Consejo Superior de Investigaciones Científicas; Españ

    Probabilistic Volcanic Hazard Assessment of the 22.5–28°S Segment of the Central Volcanic Zone of the Andes

    Get PDF
    Evaluation of volcanic hazards typically focusses on single eruptive centres or spatially restricted areas, such as volcanic fields. Expanding hazard assessments across wide regions (e.g., large sections of a continental margin) has rarely been attempted, due to the complexity of integrating temporal and spatial variability in tectonic and magmatic processes. In this study, we investigate new approaches to quantify the hazards of such long-term active and complex settings, using the example of the 22.5–28°S segment of the Central Volcanic Zone of the Andes. This research is based on the estimation of: 1) spatial probability of future volcanic activity (based on kernel density estimation using a new volcanic geospatial database), 2) temporal probability of future volcanic events, and 3) areas susceptible to volcanic flow and fall processes (based on computer modeling). Integrating these results, we produce a set of volcanic hazard maps. We then calculate the relative probabilities of population centres in the area being affected by any volcanic phenomenon. Touristic towns such as La Poma (Argentina), Toconao (Chile), Antofagasta de la Sierra (Argentina), Socaire (Chile), and Talabre (Chile) are exposed to the highest relative volcanic hazard. In addition, through this work we delineate five regions of high spatial probability (i.e., volcanic clusters), three of which correlate well with geophysical evidence of mid-crustal partial melt bodies. Many of the eruptive centres within these volcanic clusters have poorly known eruption histories and are recommended to be targeted for future work. We hope this contribution will be a useful approach to encourage probabilistic volcanic hazard assessments for other arc segments.Fil: Bertin, Daniel. University of Auckland; Nueva ZelandaFil: Lindsay, Jan M.. University of Auckland; Nueva ZelandaFil: Cronin, Shane J.. University of Auckland; Nueva ZelandaFil: de Silva, Shanaka L.. State University of Oregon; Estados UnidosFil: Connor, Charles B.. University of Florida; Estados UnidosFil: Caffe, Pablo Jorge. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Grosse, Pablo. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Báez, Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Constantinescu, Robert. University of Florida; Estados Unido

    Advances in scientific understanding of the Central Volcanic Zone of the Andes: a review of contributing factors

    Get PDF
    The Central Volcanic Zone of the Andes (CVZA) has been the focus of volcanological research for decades, becoming a very important site to understand a number of volcanic processes. Despite most of the research in the CVZA being carried out by foreign scientists, the last two decades have seen a significant increase in contributions by regional researchers. This surge has been facilitated by the creation of new volcanic observatories, improvement of the monitoring networks, creation of postgraduate programs where new local volcanologists are trained, creation of specialized research nuclei or groups, and increasing investment in research. This article presents a review of the evolution of the contributions of the regional volcanological community to the knowledge of the CVZA in the last 20 years (2000–2019), both from research and monitoring institutions in Peru, Bolivia, Argentina, and Chile. Based on updates made by the regional groups, a new list of active/potentially active volcanoes of the CVZA is presented, as is a complete database for article published on the CVZA. We find that a significant motivator has been regional volcanic unrest that has triggered new investment. Perú is the country with the highest investment in monitoring and research and is the best instrumented, Argentina is the country with the highest number of local participation in published papers in the domain of volcanology and magmatic systems, and Chilean volcanoes are the focus of the highest number of articles published. The current situation and general projections for the next decade (2020–2030) are also presented for each country, where we believe that the over the next 10 years, will be increased the monitoring and research capabilities, improved the scientific knowledge with more participation of regional institutions, and strengthen the collaboration and integrated work between CVZA countries, especially in border volcanoes
    corecore