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Accurately delimiting boundaries is required for characterizing landforms through measurement of their
geomorphometric parameters. Volcanism produces a wide range of landforms, from symmetric cones to
very irregular massifs, that can gradually merge with the surroundings and contain other elements, thus
complicating landform delimitation. Most morphometric studies of volcanoes delimit landforms
manually, with the inconvenience of being time-consuming and subjective. Here we propose an
algorithm, NETVOLC, for automatic volcano landform delimitation based on the premise that edifices
are bounded by concave breaks in slope. NETVOLC applies minimum cost flow (MCF) networks for
computing the best possible edifice outline using a DEM and its first- and second-order derivatives.
The main cost function considers only profile convexity and aspect; three alternative functions (useful in
complex cases) also consider slope, elevation and/or radial distance. NETVOLC performance is tested by
processing the Mauna Kea pyroclastic cone field. Results using the main cost function compare favorably
to manually delineated outlines in 2/3rds of cases, whereas for the remaining 1/3rd of cases an
alternative cost function is needed, introducing some degree of subjectivity. Our algorithm provides a
flexible, objective and time-saving tool for automatically delineating volcanic edifices. Furthermore, it
could be used for delineating other landforms with concave breaks in slope boundaries. Finally,
straightforward modifications can be implemented to extend the algorithm capabilities for delimiting
landforms bounded by convex breaks in slope, such as summit craters and calderas.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Landforms are discrete features of the continuous land surface
having characteristic, recognizable shapes (Evans, 1972; Neuendorf
et al., 2005). Quantitative landform mapping and analysis (specific
geomorphometry) is an important task of geomorphology.
To measure geometric characteristics of individual landforms,
complete delimitation by a closed boundary is necessary.
Currently, most landform delimitation is performed manually by
visual identification and digitization on maps, airphotos, satellite
images or digital elevation models (DEMs) (Evans, 2012). Many
landforms are bounded by changes in slope gradient (breaks in
slope). The general approach for delimitation of these landforms is
manual tracing of slope breaks using DEM-based techniques
(Smith and Clark, 2005; Evans, 2012). However, manual delimita-
tion is time-consuming and subject to user subjectivity. Algo-
rithms for automatic boundary delimitation of landforms are thus
desirable, but remain a research frontier (Evans, 2012). In recent
ll rights reserved.
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years, several automatic and semi-automatic approaches have
been developed for general landform classification (Bue and
Stepinski, 2006; Drăguţ and Blaschke, 2006; Iwahashi and Pike,
2007; Schneider and Klein, 2010) and for extraction of specific
landforms, such as seamounts (Hillier, 2008) or drumlins (Saha
et al., 2011).

Volcanism produces a wide range of landforms. They can be
excavational (calderas, maars) or, more commonly, constructional
(monogenetic cones and domes; polygenetic or composite volca-
noes). The ideal constructional volcano is a cone with radial
symmetry and slopes steeper than its surroundings; it is thus
bounded by concave breaks in slope at its base. However, volca-
noes tend to exhibit various degrees of complexity, up to very
irregular volcanic chains or massifs. In addition, volcanoes can
contain several landform elements such as summit craters, small
parasitic cones, collapse scars, erosional channels or valleys,
ridges, etc. A further complication is that volcanoes tend to merge
gradually with the surrounding landscape and some products can
be deposited at great distances from the central source. All this
makes volcanic landform delimitation for geomorphometric ana-
lysis a complicated endeavor. Consequently, most volcano mor-
phometric studies have focused on monogenetic scoria cones
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because of their simpler morphologies with clearer boundaries
(Favalli et al., 2009; Kervyn et al., 2012 and references therein).
Morphometric studies of composite volcanoes are relatively few
and have used different manual delimitation methods based on
product extent (geology), elevation contours and/or breaks in
slope (Pike, 1978; Plescia, 2004; Grosse et al., 2009; Völker et al.,
2011; Karátson et al., 2012). Recently, Grosse et al. (2012) devel-
oped a manual delimitation method using DEM-derived curvature
and slope data; they emphasized that delimitation by DEMs
should be restricted to volcano edifices and not include their
aprons which do not have a clear morphometric signature and
tend to merge with the surroundings.

Automatic closed-contouring algorithms, based on searching
for the lowest elevation contour with a quasi-elliptical shape that
completely encloses a topographic high, have been used to detect
and delineate seamounts (Behn et al., 2004; Bohnenstiehl et al.,
2008). This method has a major limitation in that closed-contours
lie at constant topographic elevation, leading to erroneous solu-
tions when the landform lies on a sloping landscape. Bohnenstiehl
et al. (2012) overcome this limitation by implementing a mod-
ification to the closed-contouring approach (MBOA) that adjusts
base elevation by evaluating the area/perimeter ratio along radial
profiles. Application of the MBOA algorithm to a cinder cone field
shows that it performs much better than the standard closed-
contour method (Howell et al., 2012). However, it depends on
several user-defined parameters and thresholds, introducing some
degree of subjectivity.

Here we present the algorithm NETVOLC for automatic delimi-
tation of volcano edifice boundaries using DEMs and applying
minimum cost flow networks. The algorithm, based on the
premise that volcano edifices are bounded by concave breaks in
slope, calculates the best possible outline by solving a minimum
cost flow problem. Thus, it delimits only the edifice as a specific
landform and excludes the surrounding apron and other far
reaching products. Application of the algorithm is intended for
any volcano with recognizable positive topography, independently
of its size. The paper is organized as follows. Section 2 describes
the proposed algorithm. Evaluation of the algorithm by real data is
presented in Section 3. Conclusions are presented in Section 4.
Fig. 1. DEM of an idealized volcanic cone. (a) is the xy plane of the DEM; point
(x0, y0) is the center of the edifice. (b) is the profile convexity map of the DEM in 1/
m units. (c) is a 3D-plot of the DEM. The red outline in (a) and (c) represents the
volcanic edifice boundary; it is perfectly defined by concave breaks in slope
represented by the most negative values in (b). Cross pattern around the cone
apex in (b) is a processing artifact never observed in real cases. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
2. The NETVOLC algorithm

2.1. Rationale

The general problem is to compute a closed path around a
volcanic center that represents the edifice boundary. Considering a
DEM of an idealized volcanic cone emerging over an arbitrary
landscape, we can define a closed path by intersection of the cone
surface with the pre-cone landscape surface. This outline repre-
sents the edifice boundary (Fig. 1) and is precisely located by
concave breaks in slope: points with maximum negative profile
curvature. Thus, the straightforward solution for a DEM of the area
is to identify pixels representing concave breaks in slope around
the edifice base.

There are several ways to measure the breaks in slope of a
surface. The profile curvature of a surface can be computed by
intersecting it with the plane of the z axis and aspect direction
(Evans, 1980; Wood, 1996). The resulting measure is known as
profile convexity, the rate of slope change along the vertical axis.
Values of profile convexity range from negative on concave surfaces
to positive on convex surfaces. In an ideal case, a volcanic edifice
boundary is well represented by pixels with maximum concavity
(most negative profile convexity), thus rendering additional infor-
mation unnecessary.
In reality, volcanic edifices are more complex. They are shaped
by several natural processes, both internal and external (erosion,
collapse, activity from nearby volcanoes, etc.), that complicate their
form and obscure the boundaries. Thus, boundary delimitation may
require additional information such as aspect, slope and elevation.
Aspect particularly, is a significant DEM-derivative product as it can
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discriminate between concave breaks in slope facing outward
or inward from the volcanic center. Inward-facing surfaces may
indicate the presence of craters, erosional features, or the base of
neighboring edifices. Slope angle can be used to discriminate breaks
in surface slope at high gradients near the edifice summit from the
lower gradient breaks in slope at the base. Elevation can filter out
undesirable complexities in the summit region and/or below
the base.

The edifice boundary problem can be conceptualized as a flow
minimization problem in a network that can be efficiently solved
by employing minimum cost flow (MCF) algorithms (Ahuja et al.,
1993). We propose optimizing an objective function obtained from
a DEM and its derived morphometric layers, directly profiting from
the relation between edifice boundary and maximum concavity.
Thus, NETVOLC is essentially a computer tool for defining edifice
boundaries, based in a MCF algorithm and DEM derived data.

2.2. Procedure

Fig. 2 shows a schematic flow chart of the implemented
procedure. The necessary inputs are: (a) a DEM covering the
volcano; and (b) the xy location of a point approximating the
center of the volcano. From the DEM, three layers are derived
using the method proposed by Wood (1996) and implemented in
the ENVI software: profile convexity, slope, and aspect. Next, we
compute an ideal cone with apex located at the central point and
calculate an aspect layer from it. Subtracting this model aspect
layer from the real (measured) aspect values, we obtain a differ-
ential aspect layer that indicates the direction in which pixels are
facing: outward from the central point (pixels with an aspect
difference o90 degree) or inward (pixels with an aspect differ-
ence 490 degree).

Then, the profile convexity and differential aspect layers are
combined into a binary mask called azimuthal curvature:

Azimuthal curvature¼
1, Prof ile convexityo0 and aspect Dif o901
0, otherwise

(

ð1Þ
Pixels with values of 1 (those with a concave profile convexity

and facing outward from the volcanic center) are considered
“good”, whereas pixels with values of 0 are discarded. Azimuthal
curvature thus limits the set of possible pixels composing the
desired solution and the problem is reduced to computing the best
possible closed path around the central point linking a set of these
pixels.

The automatic path computation is implemented by a MCF
network algorithm. The network is composed of N nodes
(or vertices) and E undirected edges linking the nodes. We
generate the network by Delaunay triangulation considering all
pixels of the azimuthal curvature mask having values of 1 as nodes.
Every edge ei,j linking the nodes is associated with a function
value; it represents the charge (or cost) of using that edge for
going to a node j from a node i, and is expressed as the cost ci,j of
the edge ei,j. Nodes n are associated with a quantity b that
represents a deficit or a surplus that must be balanced. A node n
is usually called a supply node when b is positive, a demand node
when b is negative, or a transient node when b is zero.

If the network presents a node imbalance (wherein supply and/
or demand nodes exist), the aim of MCF algorithms is to balance
the network computing an optimal solution so that:

min∑
ei,j
ci,jf i,j ð2Þ

where ci,j is the cost of making use of the edge ei,j, and fi,j is the
times that the edge ei,j has been used (in our case never more than
once). The problem formulation (2) is subject to the following
restrictions:

∑
ei,j
f i,j−∑

ej,i
f j,i ¼ bi ∀i∈N ð3aÞ

f i,j≤ui,j ∀ei,j∈E ð3bÞ

where ui,j represents the transport capacity of the edge ei,j. Note
that transport capacity is an edges’ property that depends on the
nature of the problem. In our case it is initially set to 1 for
all edges.

We use an implementation of the primal/dual network simplex
algorithm (Loebel, 2004) to solve the optimization problem. An
in-depth explanation of MCF algorithms is outside of the scope
of this work, but a complete description can be found in Ahuja
et al. (1993).

The cost function (and resulting cost map) is defined for every
pixel using the DEM-derived morphometric layers. We propose
one main cost function and three alternative more complex
functions for greater algorithm flexibility:

Cost map¼ −
1

ðProf ile convexityÞ , Azimuthal curvature¼ 1
�

ð4aÞ

Cost map¼ −
1

ðProfile convexityÞ ,

�
Azimuthal curvature¼ 1 and
Spatial extent4Min threshold or=and
Spatial extentoMax threshold

 !8><
>:

ð4bÞ

Cost map¼−
1

ðProfile convexityÞ þSlope, Azimuthal curvature¼ 1
� ð4cÞ

Cost map¼−
1

ðProfile convexityÞ þSlope,

�
Azimuthal curvature¼ 1 and
Spatial extent4Min threshold or=and
Spatial extentoMax threshold

 !8><
>: ð4dÞ

where spatial extent is a factor that considers elevation above sea
level and/or radial distance from the approximate center of the
volcano, Slope is the slope gradient measured in degrees (with the
convention of 0 degrees for an horizontal plane), andMin threshold
and Max threshold are user-defined spatial extent limits. Profile
convexity and aspect are the most relevant parameters and are
considered in all of the functions. Which cost function is applied
will depend on the complexity of the volcanic terrain. For most
cases the main cost function (4a), which depends only on
profile convexity and aspect, can be used satisfactorily. Where
there are breaks in slope at high gradients within the edifice,
function (4c) is preferred so that these unwanted inner breaks in
slope are minimized with respect to the desired outer breaks in
slope. Functions (4b) and (4d) include elevation and/or radial
distance thresholds to exclude undesirable complex areas that can
disturb the solution (see Section 3 for application of the cost
functions).

The desired solution must fulfill two conditions: (1) it must
start and end at nodes that share an edge; (2) it must form a closed
path around the central point. Finding a solution that fulfills both
conditions in a Cartesian system implies that we would have to
impose some difficult-to-implement restrictions such as forcing
intermediate pixels to be reached around the volcanic center,
imposing a minimal path length, etc. We avoid this issue by
solving the minimization problem in polar coordinates. To do so,
we transform the azimuthal curvature grid to a polar coordinate
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Fig. 2. Schematic flow chart of the implemented procedure for computation of volcanic edifice boundaries. Chascón volcano (Central Andes, Chile) is the example; DEM
is the 90 m SRTM DEM.
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system centered at the central point. Thus, the starting pixel has
coordinates Rs¼r and ϑs¼−180 degrees, and the ending pixel has
coordinates Re¼r and ϑe¼180 degrees. The main advantage of this
approach is that the path computed between the start and the end
pixel will necessarily wrap around the central point, located at
(ϑc¼0; Rc¼0).
Once the polar network is assembled, the cost associated to
every edge ei,j is defined as:

ci,j ¼
CostMap_iþCostMap_j
� �

� le2i,j ð5Þ
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where CostMap_i and CostMap_j are the pixels’ cost extracted from
a selected function (4a)–(4d), and lei,j is the Euclidean length of the
edge ei,j between nodes i and j.

The network imbalance is imposed manually. To avoid user
subjectivity in the selection of the imbalanced nodes we create
two fictitious nodes: a supply node connected to every node on
the −180 degrees azimuth polar coordinate; and a demand node
connected to every node on the 180 degrees azimuth polar
coordinate. This strategy has the following advantages: (1) the
selection of nodes depends exclusively on the cost function;
(2) the computed path between the fictitious nodes is always
around the volcanic center.

As an initial step, we analyze the network for overcoming
undesired situations presented when the edges linking the supply
and demand nodes are few. Under this condition, the network solver
will give priority to these edges (independently of their associated
cost) and the solution will be undoubtedly wrong. In particular, there
are two kinds of edges that can produce this scenario: (1) the edges
linking the four corners of the network grid, and (2) those edges
belonging to the triangulation convex hull (Knuth, 1992). The latter is
easily identified and cancelled from the network when the triangula-
tion is computed. Identifying the former is more difficult but can be
done because it is characterized by edges that are much longer than
the typical ones found within a given network. A simple statistical
analysis based on the length of edges is implemented to identify and
remove them.

The suggested algorithm gives accurate solutions for most
simple cases. Inconveniently, however, it tends to compute the
shortest path between the fictitious nodes. In boundary delimita-
tion problems a shortest path is not always the best solution. We
find that a better solution than (2) is:

min
∑ei,j ci,jf i,j

n
ð6Þ

where n is the number of nodes used in the global solution. The
new problem formulation (6) is thus a normalized solution.

Computing (6) is not simple because the number of nodes in
the final solution is a-priori unknown. To overcome this limitation
we propose an iterative mechanism that searches for several
solutions. Every solution is a combination of several edges; and
every edge is associated with a cost given by Eq. (5). A way to alter
the computed MCF solution without changing the cost of the
edges is to modify their transport capacity ui,j. The proposed
iterative mechanism is based on the statistics of the edges’ costs
in the previous computed solution. Those edges with costs above a
threshold computed from the mean and the standard deviation of
Fig. 3. Inputs for the iterative procedure of volcanic edifice boundary computation. (a) is
distribution of the network pixels. Chimborazo volcano (Ecuador) is the example; DEM
the previous solution are cancelled from the network by assigning
a null transport capacity ui,j¼0. In the following iteration, a new
solution is computed considering the modified network. Note that
in this way we favor the shorter edges (see Eq. (5)) over the longer
ones, whose costs tend to be higher due to the parameter lei,j.
The steps of the iteration procedure can be summarized as:
a)
the
is t
An initial solution is computed using formulation (2).

b)
 The mean (x) and the standard deviation (s) of the edges’ costs

included in the solution are computed.

c)
 Assuming that the best edges are those with costs below the

range xoxþ2s, edges above this range are cancelled from the
network.
d)
 A new optimal solution is computed considering the remain-
ing edges.
e)
 The whole procedure is repeated until a finite number of
solutions are reached (from testing we find that 10 iterations
are enough to reach a satisfactory solution).
f)
 Considering formulation (6), the total cost of each solution is
normalized by the corresponding number of nodes.
g)
 The solution with the lowest normalized cost is the solution of
the problem.

The procedure is illustrated in Figs. 3–5. Fig. 3 shows the
cost map in Cartesian coordinates (a) and the network in polar
coordinates (b). Fig. 4 is a detail of the network (red box in Fig. 3)
showing a portion of the solutions reached in three successive
iterations (yellow lines) and the cancelled edges of the previous
iterations (red segments). Fig. 5 shows the solutions obtained after
iterations 1 to 3 and the final solution (in red).

A final control over the computed solution must be applied.
As shown in Fig. 5, the starting and ending pixels of the solutions
can be disconnected; this occurs when the MCF algorithm com-
putes a solution where the starting and ending pixels are not
equidistant from the origin (Rs¼0). In order to obtain a continuous
solution, we adjust it by two additional computations. First, we
constrain the ending node to the same coordinate as the starting
node. Second, we constrain the starting node to the same coordi-
nate as the ending one. Both additional solutions are compared
and the one with lower normalized cost is selected.
3. Algorithm evaluation

In this section we apply NETVOLC to the Mauna Kea pyroclastic
cone field (Hawaii, USA) in order to evaluate performance of the
cost map obtained from the DEM-derived morphometric layers. (b) is the polar
he 90 m SRTM DEM.



Fig. 4. Illustration of the iterative procedure for computation of volcanic edifice boundaries. The network is a computed Delaunay triangulation corresponding to the area
enclosed by the red box in Fig. 3(b). Iteration 1, 2 and 3 are the first three iterations of the procedure. The yellow line represents part of the computed solution. On iterations
2 and 3, the cancelled edges of the previous iterations are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Computed solutions for Chimborazo volcano. Yellow, orange and green
outlines are the solutions corresponding to the first, second and third iterations,
respectively. Red outline is the best solution reached at iteration 4. The yellow
arrow indicates location of discontinuities between the starting and ending pixels
for the first three iterations; this problem is resolved for the final solution (see
text). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 6. NED DEM-derived shaded-relief image of the Mauna Kea cone field (Hawaii,
USA) highlighting the 56 cones analyzed with the NETVOLC algorithm. Cones with
ID's are those shown in Fig. 9.
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algorithm. The Mauna Kea cone field contains hundreds of cones
with a wide range of morphologies and is covered by the 10 m
National Elevation Dataset (NED) DEM (Gesch et al., 2002; Maune,
2007). Furthermore, Kervyn et al. (2012) recently carried out a
morphometric analysis of this cone field using the NED DEM and
considering slope breaks as the key criteria for manual delineation
of the cone outlines. We here compare the NETVOLC results with
the manual outlines of Kervyn et al. (2012).

We applied the algorithm to 56 cones (Fig. 6), all of which are
included by Kervyn et al. (2012) in a subset of cones with
‘representative morphologies’. For comparison with manual out-
lines, two widely used morphometric parameters are evaluated,
average cone base width (WCO) and cone height (HCO), together
with their ratio, HCO/WCO (e.g. Wood, 1980). WCO is directly derived
from the area enclosed by the base outline since it is calculated as
the diameter of an area-equivalent circle. HCO is estimated as the
difference between the maximum cone elevation (the same value
for both manual and NETVOLC analysis since the same DEM was
used) and the average elevation of the base outline. The morpho-
metric parameters obtained from NETVOLC and manual outlines
are shown in Tables 1–4 (supplementary material) and plotted in
Figs. 7 and 8. Fig. 9 shows examples of the outlines.

Visual inspection of outlines obtained using the main cost
function (Eq. (4a)) suggests three different groups of NETVOLC
outlines as compared with the manual ones that depend on cone
morphology and on the topography of its surroundings:
–
 Group I (21 cones; Table 1): the NETVOLC outlines follow the
same slope break paths around the cones as the manual
outlines. Outlines are thus quite similar, although the NETVOLC
outlines tend to cover a smaller area because they are ‘tighter’
around the cone (Fig. 9a). Consequently, the derived NETVOLC
parameters have somewhat smaller values than the manual
parameters (Figs. 7 and 8), with WCO and HCO differences
mostly between 0% and −10% (5% average absolute difference



Fig. 7. XY plots comparing morphometric parameters obtained from the NETVOLC
with the manual (Kervyn et al., 2012) outlines for 56 cinder cones of the Mauna Kea
cone field (Hawaii, USA).

Fig. 8. Box-and-whisker plots summarizing the statistics of the morphometric
parameters obtained from the NETVOLC and manual (Kervyn et al., 2012) outlines
for the analyzed cones of the Mauna Kea cone field (Hawaii, USA). Bottom and top
of box are the lower and upper quartiles, respectively; inner horizontal line is the
median; inner dot is the mean; whiskers are minimum and maximum values.
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for both parameters). The differences in width and height
between outlines correlate directly, and thus the HCO/WCO

ratios are very similar, with differences mostly below 6%
(2.5% average absolute difference). From our testing of the



Fig. 9. Examples of the computed NETVOLC outlines using the main cost function (black) and comparison with the manual outlines (white) traced by Kervyn et al. (2012);
(a) are Group I cones; (b) are Group II cones; (c) are Group III cones, where dashed black outlines are the corrected NETVOLC outlines using alternative cost functions. Images
are slope layer draped over shaded-relief layer. Extent of each box is 1 km.
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NETVOLC algorithm on stratovolcanoes, we also find that
resulting outlines are generally ‘tighter’ than manual outlines.
Cones of this group have mostly steep flanks with well defined
slope-breaks at their bases and are located on relatively
uniform topography. These NETVOLC outlines, using the main
cost function, are accurate and it can be argued that they are
better than the manual outlines as they follow more precisely
the slope breaks.
–
 Group II (18 cones; Table 2): the NETVOLC outlines follow mostly
the same slope break paths as the manual outlines, but parts of
the outlines do not coincide (Fig. 9b). The NETVOLC outlines show
differences in WCO between −21% and þ16%, and in HCO between
−24% and þ2% (7% average absolute difference for both para-
meters) compared to the manual outlines (Figs. 7 and 8).
Differences in the HCO/WCO ratios are mostly below 10% (4%
average absolute difference). Cones of this group are mostly well
defined but contain complexities that produce different possi-
ble slope-break paths; surroundings are relatively uniform. In
these cases, both outlines may be valid; the NETVOLC outlines are
more accurate in terms of following the strongest possible slope
breaks, but interpretation may be needed to decide which path
is best.
–
 Group III (17 cones; Table 3): the NETVOLC outlines follow
slope-break paths that are partially or totally not around
the cone base. The outlines and derived parameters show the
greatest differences with the manual outlines (Figs. 7, 8 and 9c).
Differences in WCO are between −34% and þ3% (17% average
absolute difference), and in HCO between −56% and þ14% (19%
average absolute difference); differences in HCO/WCO ratios are
between −33% and þ22% (8% average absolute difference).
Inaccuracies in the NETVOLC outlines are due to different
causes. In most cones of this group the NETVOLC outlines
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are too high up on the cone, following slope breaks at steep
gradients (Fig. 9c). We have found during testing of the
algorithm on stratovolcanoes, using other DEMs, that slope
breaks at high gradients well within the edifice are quite
common, and can be a problem for NETVOLC. In the present
case, such slope-breaks are mostly artifacts of the NED DEM
that are generated during interpolation of elevation contours.
On other cones, inaccuracy arises when the algorithm follows
slope breaks on a neighboring landform and not to the subject
cone, such as a coalescing cone (Fig. 9c) or a valley.
For all these problematic cases, we re-applied the algorithm
using the alternative cost functions (Eq. (4b)–(4d)) and
obtained a set of corrected outlines (Table 4). These new
outlines agree much better with the manual outlines (Figs. 7,
8 and 9c), showing differences inWCO between −12% and þ16%
(5% average absolute difference), and in HCO between −13% and
þ17% (7% average absolute difference); differences in HCO/WCO

ratios are between −5% and þ16% (5% average absolute
difference).

Considering the outlines obtained using the main cost function
for the cones of groups I and II, and the corrected outlines using
the alternative cost functions for the cones of group III, the average
absolute differences in the derived parameters compared with the
manual outlines are 6% for WCO and HCO, and 4% for HCO/WCO.
The average values are WCO¼566 m; HCO¼85 m; HCO/WCO 0.1480
for the manual outlines, and WCO¼548 m; HCO¼82 m; HCO/WCO¼
0.1477 for the NETVOLC outlines.

In summary, approximately 2/3rds of the analyzed cones
delivered a good outline from the main cost function of NETVOLC.
At the remaining 1/3rd of cones, the outlines obtained from the
main cost function are partially or totally inaccurate. Causes
include slope breaks within cones at high gradients or disturbance
of slope breaks from neighboring landforms. For these cases, good
outlines can be obtained by applying an alternative cost function.
A further source of error is the artificial steps or terraces in the
NED DEM, a common problem in topo-derived DEMs. Correction
of the DEM to eliminate or attenuate these artifacts should be
performed prior to applying NETVOLC. The NETVOLC outlines
compare well with manual outlines. The outlines follow mostly
the same slope-break paths around the cone bases; partially
different outlines can occur when the cone bases have complex-
ities that produce more than one possible slope-break path.
Compared to manual outlines, the NETVOLC outlines are generally
tighter around the cones. Thus, the derived morphometric para-
meters WCO and HCO tend to have smaller values, but differences
are generally below 10%. Because width and height correlate, the
HCO/WCO ratio varies less, and differences are generally below 6%.
It can be argued that the obtained NETVOLC outlines are in most
cases better than manual outlines because they follow more
accurately the slope breaks around the cone bases.
4. Conclusions

NETVOLC is an innovative algorithm for automatically comput-
ing the boundary of volcanic edifices. It has the advantage of being
more objective and much faster than manual delineation, and
requires only a DEM of the volcano as input. In most cases, the
main cost function produces accurate outlines, but can yield
erroneous results for complex edifices. The alternative cost func-
tions give the flexibility to re-process these cases and obtain good
results, although this implies that results have to be inspected and
the alternative function has to be selected by the user, introducing
some subjectivity and semi-automation. Future development
towards eliminating this drawback is needed. Still, NETVOLC is,
at present, more objective and less time-consuming than the
manual alternative.

As formulated, the proposed algorithm is straightforward to
apply on individual volcanoes. Boundary delimitation on cone fields
(as presented above) constitutes a repetitive task where each
volcano must be identified and processed. In these cases, a
combination of an alternative approach, such as the closed-
contouring method, together with NETVOLC could be applied,
where closed-contour solutions would be used as input for NET-
VOLC. In such a case, NETVOLC would act as a corrective method of
closed-contouring solutions, being a valid alternative to that pro-
posed by Bohnenstiehl et al. (2012). This approach would allow
rapid processing of large areas with numerous volcanoes and
minimal human intervention.

Although intended for volcano edifices, NETVOLC can also be
used on other landforms with similar concave break-in-slope
boundaries such as drumlins or hummocks of varied origins.
Furthermore, straightforward modifications can be implemented
to extend the algorithm's capabilities for delimiting landforms
bounded by convex breaks-in-slope, such as summit craters and
calderas.

Finally, for a given volcano or cone field, DEMs with higher
resolution and accuracy will become available as new sensors and
technologies emerge. NETVOLC provides a flexible tool for profit-
ing from such new DEMs without much effort in re-drawing the
volcano outlines.
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