25 research outputs found

    Atmo-ecometabolomics : a novel atmospheric particle chemical characterization methodology for ecological research

    Get PDF
    Aerosol particles play important roles in processes controlling the composition of the atmosphere and function of ecosystems. A better understanding of the composition of aerosol particles is beginning to be recognized as critical for ecological research to further comprehend the link between aerosols and ecosystems. While chemical characterization of aerosols has been practiced in the atmospheric science community, detailed methodology tailored to the needs of ecological research does not exist yet. In this study, we describe an efficient methodology (atmo-ecometabolomics), in step-by-step details, from the sampling to the data analyses, to characterize the chemical composition of aerosol particles, namely atmo-metabolome. This method employs mass spectrometry platforms such as liquid and gas chromatography mass spectrometries (MS) and Fourier transform ion cyclotron resonance MS (FT-ICR-MS). For methodology evaluation, we analyzed aerosol particles collected during two different seasons (spring and summer) in a low-biological-activity ecosystem. Additionally, to further validate our methodology, we analyzed aerosol particles collected in a more biologically active ecosystem during the pollination peaks of three different representative tree species. Our statistical results showed that our sampling and extraction methods are suitable for characterizing the atmo-ecometabolomes in these two distinct ecosystems with any of the analytical platforms. Datasets obtained from each mass spectrometry instrument showed overall significant differences of the atmo-ecometabolomes between spring and summer as well as between the three pollination peak periods. Furthermore, we have identified several metabolites that can be attributed to pollen and other plant-related aerosol particles. We additionally provide a basic guide of the potential use ecometabolomic techniques on different mass spectrometry platforms to accurately analyze the atmo-ecometabolomes for ecological studies. Our method represents an advanced novel approach for future studies in the impact of aerosol particle chemical compositions on ecosystem structure and function and biogeochemistry

    Identification of a putative protein-profile associating with tamoxifen therapy-resistance in breast cancer

    Get PDF
    Tamoxifen-resistance is a major cause of death in patients with recurrent breast cancer. Current clinical parameters can correctly predict therapy response in only half of the treated patients. Identification of proteins that associate with tamoxifen-resistance is a first step towards better response prediction and tailored treatment of patients. In the present study we aimed to identify putative protein biomarkers indicative of tamoxifen therapy-resistance in breast cancer, using nanoLC-FTICR MS. Comparative proteome analysis was performed on ~5,500 pooled tumor cells obtained through laser capture microdissection from two independently processed data sets (n=24 and n=27) of tamoxifen therapy-sensitive and -resistant tumors. Peptide and protein identifications were acquired by matching mass and elution time features to information in previously generated accurate mass and time tag reference data bases. A total of 17,263 unique peptides were identified that corresponded to 2,556 non-redundant proteins identified with >=2 peptides. From this total, 1,713 protein

    METHOD Open Access Enhanced top-down characterization of histone post-translational modifications

    Get PDF
    Post-translational modifications (PTMs) of core histones work synergistically to fine tune chromatin structure and function, generating a so-called histone code that can be interpreted by a variety of chromatin interacting proteins. We report a novel online two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/ MS) platform for high-throughput and sensitive characterization of histone PTMs at the intact protein level. The platform enables unambiguous identification of 708 histone isoforms from a single 2D LC-MS/MS analysis of 7.5 µg purified core histones. The throughput and sensitivity of comprehensive histone modification characterization is dramatically improved compared with more traditional platforms

    Increasing the Separation Capacity of Intact Histone Proteoforms Chromatography Coupling Online Weak Cation Exchange-HILIC to Reversed Phase LC UVPD-HRMS

    No full text
    Top-down proteomics is an emerging analytical strategy to characterize combinatorial protein post-translational modifications (PTMs). However, sample complexity and small mass differences between chemically closely related proteoforms often limit the resolution attainable by separations employing a single liquid chromatographic (LC) principle. In particular, for ultramodified proteins like histones, extensive and time-consuming fractionation is needed to achieve deep proteoform coverage. Herein, we present the first online nanoflow comprehensive two-dimensional liquid chromatography (nLC×LC) platform top-down mass spectrometry analysis of histone proteoforms. The described two-dimensional LC system combines weak cation exchange chromatography under hydrophilic interaction LC conditions (i.e., charge- and hydrophilicity-based separation) with reversed phase liquid chromatography (i.e., hydrophobicity-based separation). The two independent chemical selectivities were run at nanoflows (300 nL/min) and coupled online with high-resolution mass spectrometry employing ultraviolet photodissociation (UVPD-HRMS). The nLC×LC workflow increased the number of intact protein masses observable relative to one-dimensional approaches and allowed characterization of hundreds of proteoforms starting from limited sample quantities (∼1.5 μg)

    The Human Proteoform Project: Defining the human proteome

    No full text
    Proteins are the primary effectors of function in biology, and thus, complete knowledge of their structure and properties is fundamental to deciphering function in basic and translational research. The chemical diversity of proteins is expressed in their many proteoforms, which result from combinations of genetic polymorphisms, RNA splice variants, and posttranslational modifications. This knowledge is foundational for the biological complexes and networks that control biology yet remains largely unknown. We propose here an ambitious initiative to define the human proteome, that is, to generate a definitive reference set of the proteoforms produced from the genome. Several examples of the power and importance of proteoform-level knowledge in disease-based research are presented along with a call for improved technologies in a two-pronged strategy to the Human Proteoform Project

    Atmo-ecometabolomics : a novel atmospheric particle chemical characterization methodology for ecological research

    No full text
    Aerosol particles play important roles in processes controlling the composition of the atmosphere and function of ecosystems. A better understanding of the composition of aerosol particles is beginning to be recognized as critical for ecological research to further comprehend the link between aerosols and ecosystems. While chemical characterization of aerosols has been practiced in the atmospheric science community, detailed methodology tailored to the needs of ecological research does not exist yet. In this study, we describe an efficient methodology (atmo-ecometabolomics), in step-by-step details, from the sampling to the data analyses, to characterize the chemical composition of aerosol particles, namely atmo-metabolome. This method employs mass spectrometry platforms such as liquid and gas chromatography mass spectrometries (MS) and Fourier transform ion cyclotron resonance MS (FT-ICR-MS). For methodology evaluation, we analyzed aerosol particles collected during two different seasons (spring and summer) in a low-biological-activity ecosystem. Additionally, to further validate our methodology, we analyzed aerosol particles collected in a more biologically active ecosystem during the pollination peaks of three different representative tree species. Our statistical results showed that our sampling and extraction methods are suitable for characterizing the atmo-ecometabolomes in these two distinct ecosystems with any of the analytical platforms. Datasets obtained from each mass spectrometry instrument showed overall significant differences of the atmo-ecometabolomes between spring and summer as well as between the three pollination peak periods. Furthermore, we have identified several metabolites that can be attributed to pollen and other plant-related aerosol particles. We additionally provide a basic guide of the potential use ecometabolomic techniques on different mass spectrometry platforms to accurately analyze the atmo-ecometabolomes for ecological studies. Our method represents an advanced novel approach for future studies in the impact of aerosol particle chemical compositions on ecosystem structure and function and biogeochemistry

    Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi

    Get PDF
    Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment
    corecore