39 research outputs found

    Increased risk of a shutdown of ocean convection posed by warm North Atlantic summers

    Get PDF
    A shutdown of ocean convection in the subpolar North Atlantic, triggered by enhanced melting over Greenland, is regarded as a potential transition point into a fundamentally different climate regime1,2,3. Noting that a key uncertainty for future convection resides in the relative importance of melting in summer and atmospheric forcing in winter, we investigate the extent to which summer conditions constrain convection with a comprehensive dataset, including hydrographic records that are over a decade in length from the convection regions. We find that warm and fresh summers, characterized by increased sea surface temperatures, freshwater concentrations and melting, are accompanied by reduced heat and buoyancy losses in winter, which entail a longer persistence of the freshwater near the surface and contribute to delaying convection. By shortening the time span for the convective freshwater export, the identified seasonal dynamics introduce a potentially critical threshold that is crossed when substantial amounts of freshwater from one summer are carried over into the next and accumulate. Warm and fresh summers in the Irminger Sea are followed by particularly short convection periods. We estimate that in the winter 2010–2011, after the warmest and freshest Irminger Sea summer on our record, ~40% of the surface freshwater was retained

    Copernicus Marine Service ocean state report, issue 4

    Get PDF
    This is the final version. Available from Taylor & Francis via the DOI in this record. FCT/MCTE

    Possible recovery site of four non-recovered bodies lost in the Marmara Sea by using an ocean circulation model

    No full text
    Five men in a paddle boat were lost in the northern Marmara Sea, Turkey, on 17 August 2014. One of the bodies and some parts of the paddle boat were recovered 100km south of the incident after seven days. The other four bodies were never recovered. An ocean circulation and a Lagrangian drift model were used together to predict the possible recovery site of the four bodies after they were lost in the Marmara Sea. Based on the circulation model output and atmospheric conditions at the time of the incident, it is concluded that there are two possible fates for the missing bodies. They either travelled west and reached the western coast of the Marmara Sea or, most probably, they drifted further to the south and left the Marmara Sea by passing through the Dardanelles Strait

    The Mediterranean ocean forecasting system: first phase of implementation (1998-2001)

    Get PDF
    International audienceThe Mediterranean Forecasting system Pilot Project has concluded its activities in 2001, achieving the following goals: 1. Realization of the first high-frequency (twice a month) Voluntary Observing Ship (VOS) system for the Mediterranean Sea with XBT profiles for the upper thermocline (0-700 m) and 12 n.m. along track nominal resolution; 2. Realization of the first Mediterranean Multidisciplinary Moored Array (M3A) system for the Near-Real-Time (NRT) acquisition of physical and biochemical observations. The actual observations consists of: air-sea interaction parameters, upper thermocline (0-500 m) temperature, salinity, oxygen and currents, euphotic zone (0-100 m) chlorophyll, nutrients, Photosinthetically Available Radiation (PAR) and turbidity; 3. Analysis and NRT dissemination of high quality along track Sea Level Anomaly (SLA), Sea Surface Temperature (SST) data from satellite sensors to be assimilated into the forecasting model; 4. Assembly and implementation of a multivariate Reduced Order Optimal Interpolation scheme (ROOI) for assimilation in NRT of all available data, in particular, SLA and VOS-XBT profiles; 5. Demonstration of the practical feasibility of NRT ten day forecasts at the Mediterranean basin scale with resolution of 0.125° in latitude and longitude. The analysis or nowcast is done once a week; 6. Development and implementation of nested regional (5 km) and shelf (2-3 km) models to simulate the seasonal variability. Four regional and nine shelf models were implemented successfully, nested within the forecasting model. The implementation exercise was carried out in different region/shelf dynamical regimes and it was demonstrated that one-way nesting is practical and accurate; 7. Validation and calibration of a complex ecosystem model in data reach shelf areas, to prepare for forecasting in a future phase. The same ecosystem model is capable of reproducing the major features of the primary producers' carbon cycle in different regions and shelf areas. The model simulations were compared with the multidisciplinary M3A buoy observations and assimilation techniques were developed for the biochemical data. This paper overviews the methodological aspects of the research done, from the NRT observing system to the forecasting/modelling components and to the extensive validation/calibration experiments carried out with regional/shelf and ecosystem models. Key words. Oceanography: general (ocean prediction; instruments and techniques) Oceanography: physical (currents
    corecore