4,308 research outputs found
Vapor Pressure of Ionic Liquids
We argue that the extremely low vapor pressures of room temperature ionic
liquids near their triple points are due to the combination of strong ionic
characters and of low melting temperatures.Comment: Initially submitted manuscript of article M. Bier and S. Dietrich,
Mol. Phys. 108, 211 (2010) [Corrigendum: Mol. Phys. 108, 1413 (2010)
Expression of human adenosine deaminase in nonhuman primates after retrovirus-mediated gene transfer.
Primate bone marrow cells were infected with a retroviral vector carrying the genes for human adenosine deaminase (h-ADA) and bacterial neomycin resistance (neor). The infected cells were infused back into the lethally irradiated donor animals. Several monkeys fully reconstituted and were shown to express the h-ADA and neor genes at low levels in their recirculating hematopoietic cells for short periods of time
Investigation of Non-Stable Processes in Close Binary Ry Scuti
We present results of reanalysis of old electrophotometric data of early type
close binary system RY Scuti obtained at the Abastumani Astrophysical
Observatory, Georgia, during 1972-1990 years and at the Maidanak Observatory,
Uzbekistan, during 1979-1991 years. It is revealed non-stable processes in RY
Sct from period to period, from month to month and from year to year. This
variation consists from the hundredths up to the tenths of a magnitude.
Furthermore, periodical changes in the system's light are displayed near the
first maximum on timescales of a few years. That is of great interest with
regard to some similar variations seen in luminous blue variable (LBV) stars.
This also could be closely related to the question of why RY Sct ejected its
nebula.Comment: 11 pages, 6 figures, 2 table
Superconductivity at the Border of Electron Localization and Itinerancy
The superconducting state of iron pnictides and chalcogenides exists at the
border of antiferromagnetic order. Consequently, these materials could provide
clues about the relationship between magnetism and unconventional
superconductivity. One explanation, motivated by the so-called bad-metal
behaviour of these materials, proposes that magnetism and superconductivity
develop out of quasi-localized magnetic moments which are generated by strong
electron-electron correlations. Another suggests that these phenomena are the
result of weakly interacting electron states that lie on nested Fermi surfaces.
Here we address the issue by comparing the newly discovered alkaline iron
selenide superconductors, which exhibit no Fermi-surface nesting, to their iron
pnictide counterparts. We show that the strong-coupling approach leads to
similar pairing amplitudes in these materials, despite their different Fermi
surfaces. We also find that the pairing amplitudes are largest at the boundary
between electronic localization and itinerancy, suggesting that new
superconductors might be found in materials with similar characteristics.Comment: Version of the published manuscript prior to final journal-editting.
Main text (23 pages, 4 figures) + Supplementary Information (14 pages, 7
figures, 3 tables). Calculation on the single-layer FeSe is added.
Enhancement of the pairing amplitude in the vicinity of the Mott transition
is highlighted. Published version is at
http://www.nature.com/ncomms/2013/131115/ncomms3783/full/ncomms3783.htm
Supersymmetric Higgs Yukawa Couplings to Bottom Quarks at next-to-next-to-leading Order
The effective bottom Yukawa couplings are analyzed for the minimal
supersymmetric extension of the Standard Model at two-loop accuracy within
SUSY-QCD. They include the resummation of the dominant corrections for large
values of tg(beta). In particular the two-loop SUSY-QCD corrections to the
leading SUSY-QCD and top-induced SUSY-electroweak contributions are addressed.
The residual theoretical uncertainties range at the per-cent level.Comment: 25 pages, 9 figures, added comments and references, typos corrected,
results unchanged, published versio
Discrete element modelling and cavity expansion analysis of cone penetration testing
This paper uses the discrete element method (DEM) in three dimensions to simulate cone penetration testing (CPT) of granular materials in a calibration chamber. Several researchers have used different numerical techniques such as strain path methods and finite element methods to study CPT problems. The DEM is a useful alternative tool for studying cone penetration problems because of its ability to provide micro mechanical insight into the behaviour of granular materials and cone penetration resistance. A 30° chamber segment and a particle refinement method were used for the simulations. Giving constant mass to each particle in the sample was found to reduce computational time significantly, without significantly affecting tip resistance. The effects of initial sample conditions and particle friction coefficient on tip resistance are investigated and found to have an important effect on the tip resistance. Biaxial test simulations using DEM are conducted to obtain the basic granular material properties for obtaining CPT analytical solutions based on continuum mechanics. Macro properties of the samples for different input micro parameters are presented and used to obtain the analytical CPT results. Comparison between the numerical simulations and analytical solutions show good agreement
Sorting of chromosomes by magnetic separation
Chromosomes were isolated from Chinese hamster x human hybrid cell lines containing four and nine human chromosomes. Human genomic DNA was biotinylated by nick translation and used to label the human chromosomes by in situ hybridization in suspension. Streptavidin was covalently coupled to the surface of magnetic beads and these were incubated with the hybridized chromosomes. The human chromosomes were bound to the magnetic beads through the strong biotin-streptavidin complex and then rapidly separated from nonlabeled Chinese hamster chromosomes by a simple permanent magnet. The hybridization was visualized by additional binding of avidin-FITC (fluorescein) to the unoccupied biotinylated human DNA bound to the human chromosomes. After magnetic separation, up to 98% of the individual chromosomes attached to magnetic beads were classified as human chromosomes by fluorescence microscopy
Colletotrichum—names in current use
Filamentous fungi in the genus Colletotrichum are destructive pathogens that cause disease and crop losses in plants worldwide. Taxonomy and nomenclature in the group is confusing, even to scientists working in the field, and inaccurate diagnosis of species is not uncommon. In this review, we provide a overview of the 66 Colletotrichum names that are in common use, and the 19 recently used names which are regarded as doubtful. This paper represents the first comprehensive overview of the genus in 17 years, and is the first summary treatment of Colletotrichum to incorporate data generated through DNA analysis and phylogenetic systematics. Species are listed alphabetically and annotated with their taxonomic entry, teleomorph, hosts and disease, brief summaries of taxonomic and phylogenetic research, and outstanding issues for the genus that are neccesary to stabilize species names. Sequence data and type culture collection resources are also summarized. The paper serves to provide a new starting point for usage of current names in Colletotrichum and indicates future work needed
Nonequilibrium Singlet-Triplet Kondo Effect in Carbon Nanotubes
The Kondo-effect is a many-body phenomenon arising due to conduction
electrons scattering off a localized spin. Coherent spin-flip scattering off
such a quantum impurity correlates the conduction electrons and at low
temperature this leads to a zero-bias conductance anomaly. This has become a
common signature in bias-spectroscopy of single-electron transistors, observed
in GaAs quantum dots as well as in various single-molecule transistors. While
the zero-bias Kondo effect is well established it remains uncertain to what
extent Kondo correlations persist in non-equilibrium situations where inelastic
processes induce decoherence. Here we report on a pronounced conductance peak
observed at finite bias-voltage in a carbon nanotube quantum dot in the spin
singlet ground state. We explain this finite-bias conductance anomaly by a
nonequilibrium Kondo-effect involving excitations into a spin triplet state.
Excellent agreement between calculated and measured nonlinear conductance is
obtained, thus strongly supporting the correlated nature of this nonequilibrium
resonance.Comment: 21 pages, 5 figure
An Anti-Glitch in a Magnetar
Magnetars are neutron stars showing dramatic X-ray and soft -ray
outbursting behaviour that is thought to be powered by intense internal
magnetic fields. Like conventional young neutron stars in the form of radio
pulsars, magnetars exhibit "glitches" during which angular momentum is believed
to be transferred between the solid outer crust and the superfluid component of
the inner crust. Hitherto, the several hundred observed glitches in radio
pulsars and magnetars have involved a sudden spin-up of the star, due
presumably to the interior superfluid rotating faster than the crust. Here we
report on X-ray timing observations of the magnetar 1E 2259+586 which we show
exhibited a clear "anti-glitch" -- a sudden spin down. We show that this event,
like some previous magnetar spin-up glitches, was accompanied by multiple X-ray
radiative changes and a significant spin-down rate change. This event, if of
origin internal to the star, is unpredicted in models of neutron star spin-down
and is suggestive of differential rotation in the neutron star, further
supporting the need for a rethinking of glitch theory for all neutron stars
- …