1,646 research outputs found

    A porcine gene, PBK, differentially expressed in the longissimus muscle from Meishan and Large White pig

    Get PDF
    An investigation of differences in gene expression in the longissimus muscle of Meishan and Large White pigs was undertaken, using the mRNA display technique. A fragment of one differentially expressed gene was isolated and sequenced, whereupon the complete cDNA sequence was then obtained by using the rapid amplification of cDNA ends (RACE). The nucleotide sequence of the gene is not related to any known porcine gene. Sequence analysis revealed that the open reading frame of this gene encodes a protein with 322 amino acids, thus displaying high sequence identity with the PDZ binding kinase (PBK) of eleven other animal species – dog, horse, cattle, human, chimpanzee, crab-eating macaque, rhesus monkey, rat, mouse, gray short-tailed opossum and platypus, so it can be defined as the porcine PBK gene. This gene was finally assigned GeneID:100141310. Phylogenetic tree analysis revealed that the swine PBK gene has a closer genetic relationship with the PBK gene of platypus. Gene expression analysis of eight tissues of a Meishan x Large White cross showed that the porcine PBK gene is differentially expressed in various tissues. Our experiment established the primary foundation for further research on this gene

    Stimulated emission of polarization-entangled photons

    Get PDF
    Entangled photon pairs -- discrete light quanta that exhibit non-classical correlations -- play a crucial role in quantum information science (for example in demonstrations of quantum non-locality and quantum cryptography). At the macroscopic optical field level non-classical correlations can also be important, as in the case of squeezed light, entangled light beams and teleportation of continuous quantum variables. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons. This entanglement structure holds great promise in quantum information science where there is a strong demand for entangled states of increasing complexity.Comment: 5 pages, 4 figures, RevTeX

    Imaging the Two Gaps of the High-TC Superconductor Pb-Bi2Sr2CuO6+x

    Full text link
    The nature of the pseudogap state, observed above the superconducting transition temperature TC in many high temperature superconductors, is the center of much debate. Recently, this discussion has focused on the number of energy gaps in these materials. Some experiments indicate a single energy gap, implying that the pseudogap is a precursor state. Others indicate two, suggesting that it is a competing or coexisting phase. Here we report on temperature dependent scanning tunneling spectroscopy of Pb-Bi2Sr2CuO6+x. We have found a new, narrow, homogeneous gap that vanishes near TC, superimposed on the typically observed, inhomogeneous, broad gap, which is only weakly temperature dependent. These results not only support the two gap picture, but also explain previously troubling differences between scanning tunneling microscopy and other experimental measurements.Comment: 6 page

    Long-distance quantum communication with atomic ensembles and linear optics

    Get PDF
    Quantum communication holds a promise for absolutely secure transmission of secret messages and faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for physical implementation of quantum communication. However, due to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. We describe a scheme that allows to implement robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and therefore well fits the status of the current experimental technology. We show that the communication efficiency scale polynomially with the channel length thereby facilitating scalability to very long distances.Comment: 2 tex files (Main text + Supplement), 4 figure

    Genetic Modulation of Lipid Profiles following Lifestyle Modification or Metformin Treatment: the Diabetes Prevention Program

    Get PDF
    Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P=0.04–1×10−17^{−17}). Except for total HDL particles (r=−0.03, P=0.26), all components of the lipid profile correlated with the GRS (partial |r|=0.07–0.17, P=5×10−5^{−5}–1×10−19^{−19}). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β=+0.87, SEE±0.22 mg/dl/allele, P=8×10−5, Pinteraction_{interaction}=0.02) in the lifestyle intervention group, but not in the placebo (β=+0.20, SEE±0.22 mg/dl/allele, P=0.35) or metformin (β=−0.03, SEE±0.22 mg/dl/allele, P=0.90; Pinteraction_{interaction}=0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β=+0.30, SEE±0.012 ln nmol/L/allele, P=0.01, Pinteraction_{interaction}=0.01) but not in the placebo (β=−0.002, SEE±0.008 ln nmol/L/allele, P=0.74) or metformin (β=+0.013, SEE±0.008 nmol/L/allele, P=0.12; Pinteraction_{interaction} = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss

    Fully gapped topological surface states in Bi2_2Se3_3 films induced by a d-wave high-temperature superconductor

    Full text link
    Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi2_2Se3_3 films on a d-wave superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi2_2Se3_3 films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274

    Discovery of microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x

    Full text link
    The parent compounds of the copper oxide high-Tc superconductors are unusual insulators. Superconductivity arises when they are properly doped away from stoichiometry1. In Bi2Sr2CaCu2O8+x, superconductivity results from doping with excess oxygen atoms, which introduce positive charge carriers (holes) into the CuO2 planes, where superconductivity is believed to originate. The role of these oxygen dopants is not well understood, other than the fact that they provide charge carriers. However, it is not even clear how these charges distribute in the CuO2 planes. Accordingly, many models of high-Tc superconductors simply assume that the charge carriers introduced by doping distribute uniformly, leading to an electronically homogeneous system, as in ordinary metals. Here we report the observation of an electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x using scanning tunnelling microscopy/spectroscopy. This inhomogeneity is manifested as spatial variations in both the local density of states spectrum and the superconducting energy gap. These variations are correlated spatially and vary on a surprisingly short length scale of ~ 14 Angs. Analysis suggests that the inhomogeneity observed is a consequence of proximity to a Mott insulator resulting in poor screening of the charge potentials associated with the oxygen ions left behind in the BiO plane after doping. Hence this experiment is a direct probe of the local nature of the superconducting state, which is not easily accessible by macroscopic measurements.Comment: 6 pages, 4 figure

    Fluorescence characterization of clinically-important bacteria

    Get PDF
    Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination
    • …
    corecore