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Abstract
This paper is concerned with the invasion traveling wave solutions of a Lotka-Volterra
type competition system with nonlocal dispersal, the purpose of which is to
formulate the dynamics between the resident and the invader. By constructing upper
and lower solutions and passing to a limit function, the existence of traveling wave
solutions is obtained if the wave speed is not less than a threshold. When the wave
speed is smaller than the threshold, the nonexistence of invasion traveling wave
solutions is proved by the theory of asymptotic spreading.
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1 Introduction
In the past decades, much attention has been paid to the spatial propagation modes of the
following Lotka-Volterra type diffusion system:

⎧⎨
⎩

∂u(x,t)
∂t = d�u(x, t) + ru(x, t)[ – u(x, t) – bu(x, t)],

∂u(x,t)
∂t = d�u(x, t) + ru(x, t)[ – u(x, t) – bu(x, t)],

(.)

in which all the parameters are positive and x ∈R, t > , u, u are two competitors. Many
investigators considered its traveling wave solutions connecting different spatial homoge-
neous steady states such as the existence, monotonicity, minimal wave speed and stability;
see [–].
In particular, if b <  < b holds in (.), then the corresponding reaction system has a

stable equilibrium (, ) and an unstable one (, ). With the condition b <  < b, many
papers including [, , , , , ] studied the traveling wave solutions connecting (, )
with (, ). These traveling wave solutions can formulate the spatial exclusive process be-
tween the resident u and the invader u so that the minimal wave speed reflecting the
invasion speed of the invader becomes a hot topic in these works; we refer to Shigesada
and Kawasaki [] for some examples of the corresponding biological records and the lit-
erature importance of invasion speed. Moreover, the similar problem was also discussed
in different spatial media such as the lattice differential systems in Guo and Liang [], Guo
and Wu [].
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In this paper, we consider the minimal wave speed of traveling wave solutions in the
following nonlocal dispersal system (see Yu and Yuan []):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d[

∫
R
J(x – y)u(y, t)dy – u(x, t)]

+ ru(x, t)[ – u(x, t) – bu(x, t)],
∂u(x,t)

∂t = d[
∫
R
J(x – y)u(y, t)dy – u(x, t)]

+ ru(x, t)[ – u(x, t) – bu(x, t)],

(.)

in which x ∈R, t > , u(x, t) and u(x, t) denote the densities of two competitors at time t
and location x ∈R, all the parameters are positive and

b <  < b, (.)

Ji :R → R, i = , , are probability functions formulating the random dispersal of individ-
uals and satisfy the following assumptions:
(J) Ji is nonnegative and Lebesgue measurable for each i = , ;
(J) for any λ ∈R,

∫
R
Ji(y)eλy dy < ∞, i = , ;

(J)
∫
R
Ji(y)dy = , Ji(y) = Ji(–y), y ∈R, i = , .

In (.), the spatial migration of individuals is formulated by the so-called dispersal opera-
tor, which has significant sense in population dynamics. For example, in the patch models
of population dynamics [], the rate of immigration into a patch from a particular other
patch is usually taken as proportional to the local population, and the dispersal can be
regarded as the extension of these ideas to a continuous media model. Such a diffusion
mechanism also arises from physics processes with long range effect and other disciplines
[], and the dynamics of evolutionary systems with dispersal effect has been widely stud-
ied in recent years; we refer to [, –] and the references cited therein.
Hereafter, a traveling wave solution of (.) is a special solution of the form

u(x, t) = φ(ξ ), u(x, t) = φ(ξ ), ξ = x + ct,

where c >  is the wave speed at which the wave profile (φ,φ) ∈ C(R,R) propagates in
spatial media R. Thus, (φ,φ) with c >  must satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cφ′
(ξ ) = d[

∫
R
J(ξ – y)φ(y)dy – φ(ξ )]

+ rφ(ξ )[ – φ(ξ ) – bφ(ξ )], ξ ∈R,

cφ′
(ξ ) = d[

∫
R
J(ξ – y)φ(y)dy – φ(ξ )]

+ rφ(ξ )[ – φ(ξ ) – bφ(ξ )], ξ ∈R.

(.)

Moreover, we also require the following asymptotic boundary conditions:

lim
ξ→–∞

(
φ(ξ ),φ(ξ )

)
= (, ), lim

ξ→∞
(
φ(ξ ),φ(ξ )

)
= (, ). (.)

From the viewpoint of ecology, a traveling wave solution satisfying (.)-(.) can model
the population invasion process: at any fixed x ∈ R, only u (the resident) can be found
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long time ago (t → –∞ such that x + ct → –∞), but after a long time (t → ∞ such that
x+ ct → ∞), only u (the invader) can be seen. Therefore, we call a traveling wave solution
satisfying (.)-(.) an invasion traveling wave solution.
To obtain the existence of (.)-(.) if the wave speed is larger than a threshold depend-

ing on J, d, r and b, we construct proper upper and lower solutions and use the results
in Pan et al. []. If the wave speed is the threshold, the existence of traveling wave solu-
tions is proved by passing to a limit function. Finally, when the wave speed is smaller than
the threshold, the nonexistence of traveling wave solutions is established by the theory of
asymptotic spreading developed by Jin and Zhao []. For more results on the traveling
wave solutions of evolutionary systems with nonlocal dispersal, we refer to Bates et al.
[], Coville and Dupaigne [, ], Li et al. [], Lv [], Pan [], Pan et al. [, ],
Sun et al. [], Wu and Liu [], Xu andWeng [], Zhang et al. []. In particular, when
b,b ∈ (, ) hold in (.), Yu and Yuan [] established the existence of traveling wave
solutions connecting (, ) with

(
 – b
 – bb

,
 – b
 – bb

)
.

In addition, Li and Lin [] and Zhang et al. [] investigated the existence of positive
traveling wave solutions of (.) for b < , b <  and bb < , respectively.
The rest of this paper is organized as follows. In Section ,we give somepreliminaries. By

constructing upper and lower solutions and using a limit process, the existence of traveling
wave solutions is established in Section . In the last section, we obtain the nonexistence
of traveling wave solutions.

2 Preliminaries
In this paper, we shall use the standard partial order in R

. Moreover, denote

X =
{
u : u is a bounded and uniformly continuous function from R to R

},
then X is a Banach space equipped with the standard supremum norm. If a,b ∈ R

 with
a ≤ b, then

X[a,b] =
{
u ∈ X : a ≤ u(ξ )≤ b, ξ ∈R

}
.

In order to apply the comparison principle, we first make a change of variables to obtain a
cooperative system. Let φ*

 = φ, φ*
 =  –φ, and drop the star for the sake of convenience,

then (.) becomes

⎧⎨
⎩cφ′

(ξ ) = d[
∫
R
J(ξ – y)φ(y)dy – φ(ξ )] + rφ(ξ )[ – b – φ(ξ ) + bφ(ξ )],

cφ′
(ξ ) = d[

∫
R
J(ξ – y)φ(y)dy – φ(ξ )] + r[ – φ(ξ )][bφ(ξ ) – φ(ξ )].

(.)

At the same time, (.) will be

lim
ξ→–∞

(
φ(ξ ),φ(ξ )

)
= (, ), lim

ξ→∞
(
φ(ξ ),φ(ξ )

)
= (, ). (.)

http://www.boundaryvalueproblems.com/content/2012/1/120
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Take β = (d + d + r + r + )( + b + b) and

H(φ,φ)(ξ )

= d
∫
R

J(ξ – y)φ(y)dy + (β – d)φ(ξ ) + rφ(ξ )
[
 – b – φ(ξ ) + bφ(ξ )

]
,

H(φ,φ)(ξ )

= d
∫
R

J(ξ – y)φ(y)dy + (β – d)φ(ξ ) + r
[
 – φ(ξ )

][
bφ(ξ ) – φ(ξ )

]
,

then Hi is monotone in the functional sense if (φ,φ) ∈ X[,]. Applying these notations,
we further define an operator F = (F,F) : X[,] → X[,] as follows:

Fi(φ,φ)(ξ ) =

c

∫ ξ

–∞
e–

β
c (ξ–s)Hi(φ,φ)(s)ds, i = , .

Clearly, a fixed point of (F,F) in X satisfies (.), and a solution of (.) is also a fixed
point of F . To continue our discussion, we also introduce the following definition.

Definition . Assume that (ρ,ρ) ∈ X[,]. If ρ, ρ are differentiable on R \ T, here T

contains finite points, and the derivatives are essentially bounded so that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cρ ′
(ξ ) ≥ (≤)d[

∫
R
J(ξ – y)ρ(y)dy – ρ(ξ )]

+ rρ(ξ )[ – b – ρ(ξ ) + bρ(ξ )],

cρ ′
(ξ )≥ (≤)d[

∫
R
J(ξ – y)ρ(y)dy – ρ(ξ )]

+ r[ – ρ(ξ )][bρ(ξ ) – ρ(ξ )]

(.)

for ξ ∈R \T, then it is an upper (a lower) solution of (.).

Using Pan et al. [], Theorem ., we obtain the following conclusion.

Lemma . Assume that (φ(ξ ),φ(ξ )) is an upper solution of (.), while (φ(ξ ),φ(ξ )) is
a lower solution of (.). Also, suppose that
(P) (φ(ξ ),φ(ξ )) ≤ (φ(ξ ),φ(ξ ));
(P) limξ→–∞(φ(ξ ),φ(ξ )) = (, ), limξ→∞(φ(ξ ),φ(ξ )) = (, );
(P) sups<ξ φi(s) ≤ infs>ξ φi(s) for all ξ ∈R, i = , , and supξ∈R φ(ξ ) > .

Then (.)-(.) has a positive monotone solution (φ(ξ ),φ(ξ )) such that

(
φ(ξ ),φ(ξ )

) ≤ (
φ(ξ ),φ(ξ )

) ≤ (
φ(ξ ),φ(ξ )

)
.

We now consider the following initial value problem:
⎧⎨
⎩

∂u(x,t)
∂t = d[

∫
R
J(x – y)u(y, t)dy – u(x, t)] + ru(x, t)[ – u(x, t)],

u(x, ) = φ(x), x ∈R,
(.)

where J satisfies (J) to (J), d >  and r >  are constants, and the initial value φ(x) ∈
C(R,R) with

C(R,R) = {φ : φ is a bounded and uniformly continuous function from R to R}.

http://www.boundaryvalueproblems.com/content/2012/1/120
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In addition, let C+ be a subset of C defined by

C+ =
{
φ ∈ C : φ(x)≥ ,x ∈ R

}
.

In Jin and Zhao [], the authors investigated the asymptotic spreading of a periodic
population model with spatial dispersal. Note that the parameters in (.) are positive
constants, then [], Theorem ., implies the following result.

Lemma . Assume that φ(x) ∈ C+. Then (.) has a unique solution u(x, t) such that

u(x, t)≥ , x ∈R, t > .

In particular, if φ(x) ∈ C[,a] with some a≥ , then

 ≤ u(x, t)≤ a, x ∈R, t > .

Furthermore, we can also apply the results of Jin and Zhao [], Theorem ., since the
assumptions (H) and (H) of [] are clear. Define

c = inf
λ>

d[
∫
R
J(y)eλy dy – ] + r

λ
.

Then Jin and Zhao [], Theorem ., indicates the following conclusion.

Lemma . Assume that φ(x) ∈ C+ admits nonempty support. Then

lim inf
t→∞ inf|x|<ct u(x, t) = lim sup

t→∞
sup
|x|<ct

u(x, t) =  for any c < c,

where u(x, t) is defined by (.).

3 Existence of traveling wave solutions
In this section, we shall prove the existence of positive solutions of (.)-(.). Let

�(λ, c) = d
[∫

R

J(y)eλy dy – 
]
– cλ + r( – b)

for any λ ≥ , c > .

Lemma . There exists a constant c* >  such that the following items hold.
() For each c > c*, �(λ, c) =  has two positive real roots λ(c) < λ(c).
() If c = c*, then there exists λ(c*) >  such that �(λ(c*), c*) =  and �(λ, c*) >  for any

λ �= λ(c*).
() If c < c*, then �(λ, c) >  for any λ ≥ .

The above result is clear andwe omit the proof here. Using these constants, we can prove
the following conclusion.

http://www.boundaryvalueproblems.com/content/2012/1/120
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Theorem . Assume that c > c* and one of the following two items holds.
() bb >  and

d
[∫

R

J(y)eλ(c)y dy – 
]
– cλ(c) + r(bb – ) ≤ . (.)

() bb ≤  and

d
[∫

R

J(y)eλ(c)y dy – 
]
– cλ(c) ≤ . (.)

Then (.)-(.) has a monotone solution.

Proof Define continuous functions as follows:

φ(ξ ) =min
{
eλ(c)ξ , 

}
, φ(ξ ) =min

{
eλ(c)ξ /b, 

}
.

Claim A: (φ(ξ ),φ(ξ )) is an upper solution to (.).
Moreover, let φ(ξ ) =  hold and φ(ξ ) satisfy

cφ′
(ξ ) = d

[∫
R

J(ξ – y)φ(y)dy – φ(ξ )
]
+ rφ(ξ )

[
 – b – φ(ξ )

]

and

lim
ξ→–∞φ(ξ )e–λ(c)ξ = .

Evidently, (φ(ξ ),φ(ξ )) is a lower solution to (.) (for the existence of φ(ξ ) and φ(ξ ) ≤
min{eλ(c)ξ ,  – b}, we refer to Pan et al. []). By Lemma ., we see that (.)-(.) has a
monotone solution (φ(ξ ),φ(ξ )). Now, it suffices to prove Claim A.
If φ(ξ ) =  or φ(ξ ) = , the result is clear. If ξ ≤ , then

φ(ξ ) ≤ eλ(c)ξ /b

such that

d
[∫

R

J(ξ – y)φ(y)dy – φ(ξ )
]
– cφ′

(ξ ) + rφ(ξ )
[
 – b – φ(ξ ) + bφ(ξ )

]

≤ d
[∫

R

J(ξ – y)eλ(c)y dy – eλ(c)ξ
]
– cλ(c)eλ(c)ξ

+ reλ(c)ξ
[
 – b – eλ(c)ξ + beλ(c)ξ /b

]
= eλ(c)ξ�

(
λ(c), c

)
= ,

which completes the proof on φ(ξ ) for ξ �= .
We now consider φ(ξ ) <  with ξ < . If bb ≥ , then beλ(c)ξ ≥ eλ(c)ξ /b such that

bφ(ξ ) – φ(ξ ) = beλ(c)ξ –
eλ(c)ξ

b
≥ 

http://www.boundaryvalueproblems.com/content/2012/1/120
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and

r
[
 – φ(ξ )

][
bφ(ξ ) – φ(ξ )

] ≤ r
[
beλ(c)ξ –

eλ(c)ξ

b

]
.

Therefore, (.) leads to

d
[∫

R

J(ξ – y)φ(y)dy – φ(ξ )
]
– cφ′

(ξ ) + r
[
 – φ(ξ )

][
bφ(ξ ) – φ(ξ )

]

≤ d
[∫

R

J(ξ – y)φ(y)dy – φ(ξ )
]
– cφ′

(ξ ) + r
[
bφ(ξ ) – φ(ξ )

]

≤ eλ(c)ξ

b

[
d

[∫
R

J(y)eλ(c)y dy – 
]
– cλ(c) + r(bb – )

]

≤ .

If bb < , then bφ(ξ ) – φ(ξ )≤  and (.) imply that

d
[∫

R

J(ξ – y)φ(y)dy – φ(ξ )
]
– cφ′

(ξ ) + r
[
 – φ(ξ )

][
bφ(ξ ) – φ(ξ )

]

≤ d
[∫

R

J(ξ – y)φ(y)dy – φ(ξ )
]
– cφ′

(ξ )

≤ eλ(c)ξ

b

[
d

∫
R

J(y)eλ(c)y dy – d – cλ(c)
]

≤ .

Therefore, Claim A is true. The proof is complete. �

Theorem . Assume that one of the following items holds.
() bb >  and

d
[∫

R

J(y)eλ(c*)y dy – 
]
– c*λ

(
c*

)
+ r(bb – ) < . (.)

() bb ≤  and

d
[∫

R

J(y)eλ(c*)y dy – 
]
– c*λ

(
c*

)
< . (.)

Then (.)-(.) has a monotone solution with c = c*.

Proof If (.) or (.) holds, then there exists a decreasing sequence {cn}∞n= with cn → c*,
n → ∞ such that for each cn, (.)-(.) has a positive monotone solution (φn

 ,φn
 ). Note

that a traveling wave solution is invariant in the sense of phase shift, so we can assume
that

φn
 () = / (.)

http://www.boundaryvalueproblems.com/content/2012/1/120
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for any n. By the Ascoli-Arzela lemma and a standard nested subsequence argument (see,
e.g., Thieme and Zhao []), there exists a subsequence of {cn}∞n=, which is still denoted by
{cn}∞n= without confusion, such that (φn

 (ξ ),φn
 (ξ )) converges uniformly on every bounded

interval, and hence pointwise on R to a continuous function (φ̂(ξ ), φ̂(ξ )). Moreover, for
each cn, we have


cn
e–

β
cn (ξ–s) → 

c*
e–

β

c*
(ξ–s) for any ξ ∈R, s ≤ ξ ,

and the convergence in s is uniform for s ≤ ξ . Letting n → ∞ and using the dominated
convergence theorem in (F,F), we know that (φ̂(ξ ), φ̂(ξ )) also satisfies (.) with c = c*.
In addition, the following items are also clear.
(T) φ̂() = / (by (.));
(T) φ̂(ξ ), φ̂(ξ ) are nondecreasing in ξ ;
(T)  ≤ φ̂(ξ ), φ̂(ξ )≤ , ξ ∈R.

The items (T) to (T) further indicate that limξ→±∞ φ̂i(ξ ) exists for i = , . Denote

lim
ξ→–∞ φ̂i(ξ ) = φ̂–

i , lim
ξ→∞ φ̂i(ξ ) = φ̂+

i , i = , .

From (T), it is clear that

 ≤ φ̂–
 ≤ 


≤ φ̂+

 ≤ .

If φ̂–
 ∈ (, /], then the dominated convergence theorem in F implies that

bφ̂–
 = φ̂–

 .

Using the dominated convergence theorem in F for ξ → –∞, we get the following possi-
ble conclusions:
(L) φ̂–

 = ;
(L)  – b – φ̂–

 + bφ̂–
 =  – b – φ̂–

 + bbφ̂–
 = .

If (L) is true, then the dominated theorem in F tells us

φ̂–

[
 – φ̂–


]
= ,

which implies a contradiction. If (L) is true, then bb > b leads to

 =  – b – φ̂–
 + bbφ̂–

 >  – b – φ̂–
 + bφ̂–

 =
(
 – φ̂–


)
( – b),

which is also a contradiction.Whatwe have done implies that φ̂–
 = . Using the dominated

convergence theorem in F again, we see that bφ̂–
 = φ̂–

 =  and φ̂–
 = .

If φ̂+
 ∈ [/, ), then a discussion similar to that on φ̂–

 can be presented and we omit
it here. Because φ̂+

 = , then the dominated convergence in F as ξ → +∞ indicates that
φ̂+
 =  or φ̂+

 = . If φ̂+
 =  is true, then φ(ξ ) ≡  holds and

⎧⎨
⎩cφ′

(ξ ) = d[
∫
R
J(ξ – y)φ(y)dy – φ(ξ )] – rφ(ξ )[ – φ(ξ )],

limξ→–∞ φ(ξ ) = , limξ→∞ φ(ξ ) = 

http://www.boundaryvalueproblems.com/content/2012/1/120
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has a monotone solution, which is impossible. Therefore, φ̂+
 =  holds.

Thus, (φ̂(ξ ), φ̂(ξ )) is a positive monotone solution of (.)-(.) with c = c*, the proof is
complete. �

4 Nonexistence of traveling wave solutions
In this section, we shall formulate the nonexistence of invasion traveling wave solutions
of (.) by the theory of asymptotic spreading. Before this, we first present a comparison
principle formulated by Jin and Zhao [], Theorem ..

Lemma . Assume that φ(x) ∈ C+. If w(x, t) ≥ , x ∈ R, t >  is bounded such that

⎧⎨
⎩

∂w(x,t)
∂t ≥ (≤)d[

∫
R
J(x – y)w(y, t)dy –w(x, t)] + rw(x, t)[ –w(x, t)],

w(x, )≥ (≤)φ(x), x ∈R,
(.)

then w(x, t) ≥ (≤)u(x, t), x ∈R, t > .

We now give the main result of this section.

Theorem . If c < c*, then (.)-(.) has no positive solutions.

Proof Define

c = inf
λ>

{d[
∫
R
J(y)eλy dy – ] + r( – b)

λ

}
.

Then c = c* is evident.
If (.)-(.) has a positive solution (φ(ξ ),φ(ξ )) for some c = c < c*, then

φ(ξ ) = φ(x + ct) ≥ , x ∈R, t > , ξ ∈R

implies that φ(ξ ) also satisfies

cφ′
(ξ )≥ d

[∫
R

J(ξ – y)φ(y)dy – φ(ξ )
]
+ rφ(ξ )

[
 – b – φ(ξ )

]
(.)

with the following asymptotic boundary condition:

lim
ξ→–∞φ(ξ ) = , lim

ξ→∞φ(ξ ) = . (.)

Recalling the definition of traveling wave solutions, we see that w(x, t) = φ(x + ct) also
satisfies

∂w(x, t)
∂t

≥ d
[∫

R

J(x – y)w(y, t)dy –w(x, t)
]
+ rw(x, t)

[
 – b –w(x, t)

]
(.)

and

 ≤ w(x, t)≤ ,x ∈R, t ≥ , lim
x→∞w(x, ) = . (.)

http://www.boundaryvalueproblems.com/content/2012/1/120
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Using Lemmas . and ., we see that

lim
t→∞ inf

|x|=(c+c*)t
w(x, t)≥  – b (.)

since c + c* < c*.
However, the boundary condition (.) indicates that

ξ = x + ct → –∞ with – x =
(
c + c*

)
t, t → ∞

and

lim
t→∞,–x=(c+c*)t

w(x, t) = , (.)

which implies a contradiction between (.) and (.). The proof is complete. �

Remark . Under proper assumptions, we have obtained the threshold of the existence
of positive solutions to (.)-(.).
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