443 research outputs found

    Characterisation of the Fusarium graminearum-Wheat Floral Interaction.

    Get PDF
    PublishedJournal ArticleFusarium Ear Blight is a destructive fungal disease of cereals including wheat and can contaminate the crop with various trichothecene mycotoxins. This investigation has produced a new β-glucuronidase (GUS) reporter strain that facilitates the quick and easy assessment of plant infection. The constitutively expressed gpdA:GUS strain of Fusarium graminearum was used to quantify the overall colonisation pattern. Histochemical and biochemical approaches confirmed, in susceptible wheat ear infections, the presence of a substantial phase of symptomless fungal growth. Separate analyses demonstrated that there was a reduction in the quantity of physiologically active hyphae as the wheat ear infection proceeded. A simplified linear system of rachis infection was then utilised to evaluate the expression of several TRI genes by RT-qPCR. Fungal gene expression at the advancing front of symptomless infection was compared with the origin of infection in the rachis. This revealed that TRI gene expression was maximal at the advancing front and supports the hypothesis that the mycotoxin deoxynivalenol plays a role in inhibiting plant defences in advance of the invading intercellular hyphae. This study has also demonstrated that there are transcriptional differences between the various phases of fungal infection and that these differences are maintained as the infection proceeds.Chinese governmentBritish Society for Plant Pathology (BSPP)BBSRCEU FP 6 Integrated Project BioexploitSyngent

    Combining Computational Fluid Dynamics and Agent-Based Modeling: A New Approach to Evacuation Planning

    Get PDF
    We introduce a novel hybrid of two fields—Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)—as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool

    Rabies screen reveals GPe control of cocaine-triggered plasticity.

    Get PDF
    Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the increase in GPe labelling. Inhibition of GPe activity revealed that it contributes to two forms of cocaine-triggered behavioural plasticity, at least in part by disinhibiting dopamine neurons in the ventral tegmental area. These results suggest that rabies-based unbiased screening of changes in input populations can identify previously unappreciated circuit elements that critically support behavioural adaptations

    The Missing Link! A New Skeleton for Evolutionary Multi-agent Systems in Erlang

    Get PDF
    Evolutionary multi-agent systems (EMAS) play a critical role in many artificial intelligence applications that are in use today. In this paper, we present a new generic skeleton in Erlang for parallel EMAS computations. The skeleton enables us to capture a wide variety of concrete evolutionary computations that can exploit the same underlying parallel implementation. We demonstrate the use of our skeleton on two different evolutionary computing applications: (1) computing the minimum of the Rastrigin function; and (2) solving an urban traffic optimisation problem. We show that we can obtain very good speedups (up to 142.44 ×× the sequential performance) on a variety of different parallel hardware, while requiring very little parallelisation effort.Publisher PDFPeer reviewe

    Measure of Activity Performance in the Hand (MAP-Hand) questionnaire

    Get PDF
    Background: Developed in the Norway, the Measure of Activity Performance of the Hand (MAP-Hand) assesses 18 activities performed using the hands. It was developed for people with rheumatoid arthritis (RA) using patient generated items, which are scored on a 0-3 scale and summarised into a total score range (0 to 54). This study reports the development and psychometric testing of the British English MAP-Hand in a UK population of people with RA. Methods: Recruitment took place in the National Health Service (NHS) through 17 Rheumatology outpatient clinics. Phase 1 (cross-cultural adaptation) involved: forward translation to British English; synthesis; expert panel review and cognitive debriefing interviews with people with RA. Phase 2 (psychometric testing) involved postal completion of the MAP-Hand, Health Assessment Questionnaire (HAQ), Upper Limb HAQ (ULHAQ), Short-Form 36 (SF-36v2) and Disabilities of the Arm Shoulder Hand (DASH) to measure internal consistency (Cronbach’s alpha); concurrent validity (Spearman’s correlations) and Minimal Detectable Difference (MDC95). The MAP-Hand was repeated three-weeks later to assess test-retest reliability (linear weighted kappa and Intra-Class Correlations (ICC (2,1)). Unidimensionality (internal construct validity) was assessed using (i) Confirmatory Factor Analysis (CFA) (ii) Mokken scaling and (iii) Rasch model. The RUMM2030 software was used, applying the Rasch partial credit model. Results: In Phase 1, 31 participants considered all items relevant. In Phase 2, 340 people completed Test-1 and 273 (80%) completed Test-2 questionnaires. Internal consistency was excellent (α=0.96). Test-retest reliability was good (ICC (2,1) = 0.96 (95% CI 0.94, 0.97)). The MAP-Hand correlated strongly with HAQ20 (rs=.88), ULHAQ (rs=.91), SF-36v2 Physical Functioning (PF) Score (rs=-.80) and DASH (rs=.93), indicating strong concurrent validity. CFA failed to support unidimensionality (Chi-Square 236.0 (df 120; p <0.001)). However, Mokken scaling suggested a probabilistic ordering. There was differential item functioning (DIF) for gender. Four testlets were formed, resulting in much improved fit and unidimensionality. Following this, testlets were further merged in pairs where opposite bias existed. This resulted in perfect fit to the model. Conclusions: The British English version of the MAP-Hand has good validity and reliability in people with RA and can be used in both research and clinical practice. Keywords: PROMS; Patient Reported Outcome Measures; hand activity performance; hand function; hand pain; psychometric testing; Rasch analysis; validity; reliabilit

    Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation

    Get PDF
    Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas

    Linguistic validation, validity and reliability of the British English versions of the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire and QuickDASH in people with rheumatoid arthritis

    Get PDF
    Background: Although the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire is widely used in the UK, no British English version is available. The aim of this study was to linguistically validate the DASH into British English and then test the reliability and validity of the British English DASH, (including the Work and Sport/Music DASH) and QuickDASH, in people with rheumatoid arthritis (RA). Methods: The DASH was forward translated, reviewed by an expert panel and cognitive debriefing interviews undertaken with 31 people with RA. Content validity was evaluated using the ICF Core Set for RA. Participants with RA (n=340) then completed the DASH, Health Assessment Questionnaire (HAQ), Short Form Health Survey v2 (SF36v2) and Measure of Activity Performance of the Hand (MAPHAND). We examined internal consistency and concurrent validity for the DASH, Work and Sport/Music DASH modules and QuickDASH. Participants repeated the DASH to assess test-retest reliability. Results: Minor wording changes were made as required. The DASH addresses a quarter of Body Function and half of Activities and Participation codes in the ICF RA Core Set. Internal consistency for DASH scales were consistent with individual use (Cronbach’s alpha = 0.94-0.98). Concurrent validity was strong with the HAQ (rs = 0.69-0.91), SF36v2 Physical Function (rs = -0.71 - -0.85), Bodily Pain (rs = -0.71 - -0.74) scales and MAPHAND (rs =0.71-0.93). Test-retest reliability was good (rs = 0.74-0.95). Conclusions: British English versions of the DASH, QuickDASH and Work and Sport/Music modules are now available to evaluate upper limb disabilities in the UK. The DASH, QuickDASH, Work and Sport/Music modules are reliable and valid to use in clinical practice and research with British people with RA

    Switching Cytolytic Nanopores into Antimicrobial Fractal Ruptures by a Single Side Chain Mutation

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this recordDisruption of cell membranes is a fundamental host defense response found in virtually all forms of life. The molecular mechanisms vary but generally lead to energetically favored circular nanopores. Here, we report an elaborate fractal rupture pattern induced by a single side-chain mutation in ultrashort (8–11-mers) helical peptides, which otherwise form transmembrane pores. In contrast to known mechanisms, this mode of membrane disruption is restricted to the upper leaflet of the bilayer where it exhibits propagating fronts of peptide-lipid interfaces that are strikingly similar to viscous instabilities in fluid flow. The two distinct disruption modes, pores and fractal patterns, are both strongly antimicrobial, but only the fractal rupture is nonhemolytic. The results offer wide implications for elucidating differential membrane targeting phenomena defined at the nanoscale.UK Department for Business, Energy and Industrial StrategyWellcome TrustEuropean Research Council (ERC)Cambridge-NPL case studentshipWinton Programme for the Physics of SustainabilityTrinity-Henry Barlow ScholarshipMedical Research Council (MRC)Royal SocietyEngineering and Physical Sciences Research Council (EPSRC

    Use of cDNA Tiling Arrays for Identifying Protein Interactions Selected by In Vitro Display Technologies

    Get PDF
    In vitro display technologies such as mRNA display are powerful screening tools for protein interaction analysis, but the final cloning and sequencing processes represent a bottleneck, resulting in many false negatives. Here we describe an application of tiling array technology to identify specifically binding proteins selected with the in vitro virus (IVV) mRNA display technology. We constructed transcription-factor tiling (TFT) arrays containing ∼1,600 open reading frame sequences of known and predicted mouse transcription-regulatory factors (334,372 oligonucleotides, 50-mer in length) to analyze cDNA fragments from mRNA-display screening for Jun-associated proteins. The use of the TFT arrays greatly increased the coverage of known Jun-interactors to 28% (from 14% with the cloning and sequencing approach), without reducing the accuracy (∼75%). This method could detect even targets with extremely low expression levels (less than a single mRNA copy per cell in whole brain tissue). This highly sensitive and reliable method should be useful for high-throughput protein interaction analysis on a genome-wide scale
    corecore