47 research outputs found
Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals
Magnetic doping of semiconductor nanostructures is actively pursued for
applications in magnetic memory and spin-based electronics. Central to these
efforts is a drive to control the interaction strength between carriers
(electrons and holes) and the embedded magnetic atoms. In this respect,
colloidal nanocrystal heterostructures provide great flexibility via
growth-controlled `engineering' of electron and hole wavefunctions within
individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d
exchange interaction between electron-hole excitations (excitons) and
paramagnetic manganese ions using `inverted' core-shell nanocrystals composed
of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe.
Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the
band-edge exciton that, surprisingly, are tunable in both magnitude and sign.
Effective exciton g-factors are controllably tuned from -200 to +30 solely by
increasing the CdSe shell thickness, demonstrating that strong quantum
confinement and wavefunction engineering in heterostructured nanocrystal
materials can be utilized to manipulate carrier-Mn wavefunction overlap and the
sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf
Постать Тараса Шевченка в рецепції Ліни Костенко
У статті розглядається поетика творення Ліною Костенко образу Кобзаря крізь призму власного "я", через пережиті відчуття поета-шістдесятника, що своєю проекцією нагадують душевні терзання великого поета.В статье рассмотрена поэтика создания Линой Костенко образа Тараса Шевченко сквозь призму собственного "я", через пережитые ощущения поэта-шестидесятника, своей проекцией напоминающие душевные терзания великого поэта.The article deals with the problem of the poetics creation by Lina Kostenko Taras Shevchenko’ image through a prism her own mind, through sensations of the poet-sixtier, by the projection reminding sincere torments the great poet is considered
Electrostatic Effects in the Folding of the SH3 Domain of the c-Src Tyrosine Kinase: pH-Dependence in 3D-Domain Swapping and Amyloid Formation
The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.This research was funded by the Spanish Ministry of Science and Innovation and Ministry of Economy and Competitiveness and FEDER (EU): BIO2009-13261-C02-01/02 (ACA); BIO2012-39922-C02-01/02 (ACA); CTQ2013-4493 (JLN) and CSD2008-00005 (JLN); Andalusian Regional Government (Spain) and FEDER (EU): P09-CVI-5063 (ACA); and Valentian Regional Government (Spain) and FEDER (EU): Prometeo 2013/018 (JLN). Data collection was supported by European Synchrotron Radiation Facility (ESRF), Grenoble, France: BAG proposals MX-1406 (ACA) and MX-1541 (ACA); and ALBA (Barcelona, Spain) proposals 2012010072 (ACA) and 2012100378 (ACA)
Gravitational Lensing in Astronomy
Deflection of light by gravity was predicted by General Relativity and
observationaly confirmed in 1919. In the following decades various aspects of
the gravitational lens effect were explored theoretically, among them the
possibility of multiple or ring-like images of background sources, the use of
lensing as a gravitational telescope on very faint and distant objects, and the
possibility to determine Hubble's constant with lensing. Only relatively
recently gravitational lensing became an observational science after the
discovery of the first doubly imaged quasar in 1979. Today lensing is a booming
part of astrophysics.
In addition to multiply-imaged quasars, a number of other aspects of lensing
have been discovered since, e.g. giant luminous arcs, quasar microlensing,
Einstein rings, galactic microlensing events, arclets, or weak gravitational
lensing. By now literally hundreds of individual gravitational lens phenomena
are known.
Although still in its childhood, lensing has established itself as a very
useful astrophysical tool with some remarkable successes. It has contributed
significant new results in areas as different as the cosmological distance
scale, the large scale matter distribution in the universe, mass and mass
distribution of galaxy clusters, physics of quasars, dark matter in galaxy
halos, or galaxy structure.Comment: Review article for "Living Reviews in Relativity", see
http://www.livingreviews.org . 41 pages, latex, 22 figures (partly in GIF
format due to size constraints). High quality postscript files can be
obtained electronically at http://www.aip.de:8080/~jkw/review_figures.htm