1,306 research outputs found

    Deep generative modeling for single-cell transcriptomics.

    Get PDF
    Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task

    The effects of temperature on nitrous oxide and oxygen mixture homogeneity and stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For many long standing practices, the rationale for them is often lost as time passes. This is the situation with respect to the storage and handling of equimolar 50% nitrous oxide and 50% oxygen volume/volume (v/v) mixtures.</p> <p>Methods</p> <p>A review was undertaken of existing literature to examine the developmental history of nitrous oxide and oxygen mixtures for anesthesia and analgesia and to ascertain if sufficient bibliographic data was available to support the position that the contents of a cylinder of a 50%/50% volume/volume (v/v) mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage and if justification could be found for the standard instructions given for handling before use.</p> <p>Results</p> <p>After ranking and removing duplicates, a total of fifteen articles were identified by the various search strategies and formed the basis of this literature review. Several studies were identified that confirmed that 50%/50% v/v mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage. The effect of temperature on the change of phase of the nitrous oxide in this mixture was further examined by several authors. These studies demonstrated that although it is possible to cause condensation and phase separation by cooling the cylinder, by allowing the cylinder to rewarm to room temperature for at least 48 hours, preferably in a horizontal orientation, and inverting it three times before use, the cylinder consistently delivered the proper proportions of the component gases as a homogenous mixture.</p> <p>Conclusions</p> <p>The contents of a cylinder of a 50%/50% volume/volume (v/v) mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage. The standard instructions given for handling before are justified based on previously conducted studies.</p

    Structural insights into Clostridium perfringens delta toxin pore formation

    Get PDF
    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins

    Having a lot of a good thing: multiple important group memberships as a source of self-esteem.

    Get PDF
    Copyright: © 2015 Jetten et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedMembership in important social groups can promote a positive identity. We propose and test an identity resource model in which personal self-esteem is boosted by membership in additional important social groups. Belonging to multiple important group memberships predicts personal self-esteem in children (Study 1a), older adults (Study 1b), and former residents of a homeless shelter (Study 1c). Study 2 shows that the effects of multiple important group memberships on personal self-esteem are not reducible to number of interpersonal ties. Studies 3a and 3b provide longitudinal evidence that multiple important group memberships predict personal self-esteem over time. Studies 4 and 5 show that collective self-esteem mediates this effect, suggesting that membership in multiple important groups boosts personal self-esteem because people take pride in, and derive meaning from, important group memberships. Discussion focuses on when and why important group memberships act as a social resource that fuels personal self-esteem.This study was supported by 1. Australian Research Council Future Fellowship (FT110100238) awarded to Jolanda Jetten (see http://www.arc.gov.au) 2. Australian Research Council Linkage Grant (LP110200437) to Jolanda Jetten and Genevieve Dingle (see http://www.arc.gov.au) 3. support from the Canadian Institute for Advanced Research Social Interactions, Identity and Well-Being Program to Nyla Branscombe, S. Alexander Haslam, and Catherine Haslam (see http://www.cifar.ca)

    Long-term cultivation of colorectal carcinoma cells with anti-cancer drugs induces drug resistance and telomere elongation: an in vitro study

    Get PDF
    BACKGROUND: The role of telomerase activation in the expression and/or maintenance of drug resistance is not clearly understood. Therefore, we investigated the relationships, among the telomerase activity, telomere length and the expression of multidrug resistance genes in colorectal cancer cell lines cultivated with anti-cancer drugs. METHODS: LoVo and DLD-1 cells were continuously grown in the presence of both CDDP and 5-FU for up to 100 days. Cell proliferation, telomerase activity, telomere length and the expression of multidrug resistance genes were serially monitored as the PDL increased. RESULTS: The expression of multidrug resistance genes tended to increase as the PDL increased. However, an abnormal aneuploid clone was not detected as far as the cells were monitored by a DNA histogram analysis. Tumor cells showing resistance to anti-cancer drugs revealed a higher cell proliferation rate. The telomere length gradually increased with a progressive PDL. The telomerase activity reached a maximum level at 15 PDL in LoVo cells and at 27 PDL in DLD-1 cells. An increase in the mRNA expression of the telomerase components, especially in hTERT and in hTR, was observed at the same PDLs. CONCLUSIONS: These results suggest that a high telomerase activity and an elongation of telomeres both appear to help maintain and/or increase drug resistance in colorectal cancer cells. Cancer cells with long telomeres and a high proliferative activity may thus be able to better survive exposure to anti-cancer drugs. This is presumably due to an increased chromosome stability and a strong expression of both mdr-1 and MRP genes

    Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p><it>Mycobacterium tuberculosis </it>continues to be a major pathogen in the third world, killing almost 2 million people a year by the most recent estimates. Even in industrialized countries, the emergence of multi-drug resistant (MDR) strains of tuberculosis hails the need to develop additional medications for treatment. Many of the drugs used for treatment of tuberculosis target metabolic enzymes. Genome-scale models can be used for analysis, discovery, and as hypothesis generating tools, which will hopefully assist the rational drug development process. These models need to be able to assimilate data from large datasets and analyze them.</p> <p>Results:</p> <p>We completed a bottom up reconstruction of the metabolic network of <it>Mycobacterium tuberculosis </it>H37Rv. This functional <it>in silico </it>bacterium, <it>iNJ</it>661, contains 661 genes and 939 reactions and can produce many of the complex compounds characteristic to tuberculosis, such as mycolic acids and mycocerosates. We grew this bacterium <it>in silico </it>on various media, analyzed the model in the context of multiple high-throughput data sets, and finally we analyzed the network in an 'unbiased' manner by calculating the Hard Coupled Reaction (HCR) sets, groups of reactions that are forced to operate in unison due to mass conservation and connectivity constraints.</p> <p>Conclusion:</p> <p>Although we observed growth rates comparable to experimental observations (doubling times ranging from about 12 to 24 hours) in different media, comparisons of gene essentiality with experimental data were less encouraging (generally about 55%). The reasons for the often conflicting results were multi-fold, including gene expression variability under different conditions and lack of complete biological knowledge. Some of the inconsistencies between <it>in vitro </it>and <it>in silico </it>or <it>in vivo </it>and <it>in silico </it>results highlight specific loci that are worth further experimental investigations. Finally, by considering the HCR sets in the context of known drug targets for tuberculosis treatment we proposed new alternative, but equivalent drug targets.</p

    Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Get PDF
    BACKGROUND: Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS) deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. METHODS: To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8) with 0.6% dl-homocysteine (hCySH) for the first 8 weeks of life in comparison to controls (n = 10), and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. RESULTS: hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca(2+)/PO(4)(3- )and lower Ca(2+)/CO(3)(2- )molar ratios than in controls. Mineral crystallization was unchanged. CONCLUSION: In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic disease is small. We also conclude that the hCySH-supplemented chick is a promising model for study of the connective tissue abnormalities associated with homocystinuria and an important alternative model to the CBS knock-out mouse

    Observation of an Exotic S=+1S=+1 Baryon in Exclusive Photoproduction from the Deuteron

    Full text link
    In an exclusive measurement of the reaction γdK+Kpn\gamma d \to K^+ K^- p n, a narrow peak that can be attributed to an exotic baryon with strangeness S=+1S=+1 is seen in the K+nK^+n invariant mass spectrum. The peak is at 1.542±0.0051.542\pm 0.005 GeV/c2^2 with a measured width of 0.021 GeV/c2^2 FWHM, which is largely determined by experimental mass resolution. The statistical significance of the peak is 5.2±0.6σ5.2 \pm 0.6 \sigma. The mass and width of the observed peak are consistent with recent reports of a narrow S=+1S=+1 baryon by other experimental groups.Comment: 5 pages, 5 figure

    Measurement of Beam-Spin Asymmetries for Deep Inelastic π+\pi^+ Electroproduction

    Full text link
    We report the first evidence for a non-zero beam-spin azimuthal asymmetry in the electroproduction of positive pions in the deep-inelastic region. Data have been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of the sinϕ\sin\phi modulation increases with the momentum of the pion relative to the virtual photon, zz, with an average amplitude of 0.038±0.005±0.0030.038 \pm 0.005 \pm 0.003 for 0.5<z<0.80.5 < z < 0.8 range.Comment: 5 pages, RevTEX4, 3 figures, 2 table
    corecore