167 research outputs found
Gem-induced cytoskeleton remodeling increases cellular migration of HTLV-1-infected cells, formation of infected-to-target T-cell conjugates and viral transmission
Efficient HTLV-1 viral transmission occurs through cell-to-cell contacts. The Tax viral transcriptional activator protein facilitates this process. Using a comparative transcriptomic analysis, we recently identified a series of genes up-regulated in HTLV-1 Tax expressing T-lymphocytes. We focused our attention towards genes that are important for cytoskeleton dynamic and thus may possibly modulate cell-to-cell contacts. We first demonstrate that Gem, a member of the small GTP-binding proteins within the Ras superfamily, is expressed both at the RNA and protein levels in Tax-expressing cells and in HTLV-1-infected cell lines. Using a series of ChIP assays, we show that Tax recruits CREB and CREB Binding Protein (CBP) onto a c-AMP Responsive Element (CRE) present in the gem promoter. This CRE sequence is required to drive Tax-activated gem transcription. Since Gem is involved in cytoskeleton remodeling, we investigated its role in infected cells motility. We show that Gem co-localizes with F-actin and is involved both in T-cell spontaneous cell migration as well as chemotaxis in the presence of SDF-1/CXCL12. Importantly, gem knock-down in HTLV-1-infected cells decreases cell migration and conjugate formation. Finally, we demonstrate that Gem plays an important role in cell-to-cell viral transmission
Electrostatic Origins of CO2-Increased Hydrophilicity in Carbonate Reservoirs
Injecting CO2 into oil reservoirs appears to be cost-effective and environmentally friendly due to decreasing the use of chemicals and cutting back on the greenhouse gas emission released. However, there is a pressing need for new algorithms to characterize oil/brine/rock system wettability, thus better predict and manage CO2 geological storage and enhanced oil recovery in oil reservoirs. We coupled surface complexation/CO2 and calcite dissolution model, and accurately predicted measured oil-on-calcite contact angles in NaCl and CaCl2 solutions with and without CO2. Contact angles decreased in carbonated water indicating increased hydrophilicity under carbonation. Lowered salinity increased hydrophilicity as did Ca2+. Hydrophilicity correlates with independently calculated oil-calcite electrostatic bridging. The link between the two may be used to better implement CO2 EOR in fields
Fragment-Based Learning of Visual Object Categories in Non-Human Primates
When we perceive a visual object, we implicitly or explicitly associate it with an object category we know. Recent research has shown that the visual system can use local, informative image fragments of a given object, rather than the whole object, to classify it into a familiar category. We have previously reported, using human psychophysical studies, that when subjects learn new object categories using whole objects, they incidentally learn informative fragments, even when not required to do so. However, the neuronal mechanisms by which we acquire and use informative fragments, as well as category knowledge itself, have remained unclear. Here we describe the methods by which we adapted the relevant human psychophysical methods to awake, behaving monkeys and replicated key previous psychophysical results. This establishes awake, behaving monkeys as a useful system for future neurophysiological studies not only of informative fragments in particular, but also of object categorization and category learning in general
Canine models of copper toxicosis for understanding mammalian copper metabolism
Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeostasis remain unanswered. Genetic studies in the Bedlington terrier, a dog breed affected with copper toxicosis, identified COMMD1, a gene that was previously unknown to be involved in copper metabolism. Besides the Bedlington terrier, a number of other dog breeds suffer from hereditary copper toxicosis and show similar phenotypes to humans with copper storage disorders. Unlike the heterogeneity of most human populations, the genetic structure within a purebred dog population is homogeneous, which is advantageous for unraveling the molecular genetics of complex diseases. This article reviews the work that has been done on the Bedlington terrier, summarizes what was learned from studies into COMMD1 function, describes hereditary copper toxicosis phenotypes in other dog breeds, and discusses the opportunities for genome-wide association studies on copper toxicosis in the dog to contribute to the understanding of mammalian copper metabolism and copper metabolism disorders in man
In Vivo Methods to Study Uptake of Nanoparticles into the Brain
Several in vivo techniques have been developed to study and measure the uptake of CNS compounds into the brain. With these techniques, various parameters can be determined after drug administration, including the blood-to-brain influx constant (Kin), the permeability-surface area (PS) product, and the brain uptake index (BUI). These techniques have been mostly used for drugs that are expected to enter the brain via transmembrane diffusion or by carrier-mediated transcytosis. Drugs that have limitations in entering the brain via such pathways have been encapsulated in nanoparticles (based on lipids or synthetic polymers) to enhance brain uptake. Nanoparticles are different from CNS compounds in size, composition and uptake mechanisms. This has led to different methods and approaches to study brain uptake in vivo. Here we discuss the techniques generally used to measure nanoparticle uptake in addition to the techniques used for CNS compounds. Techniques include visualization methods, behavioral tests, and quantitative methods
Using social and behavioural science to support COVID-19 pandemic response
The COVID-19 pandemic represents a massive global health crisis. Because the crisis requires large-scale behaviour change and places significant psychological burdens on individuals, insights from the social and behavioural sciences can be used to help align human behavior with the recommendations of epidemiologists and public health experts. Here we discuss evidence from a selection of research topics relevant to pandemics, including work on navigating threats, social and cultural influences on behaviour, science communication, moral decision-making, leadership, and stress and coping. In each section, we note the nature and quality of prior research, including uncertainty and unsettled issues. We identify several insights for effective response to the COVID-19 pandemic, and also highlight important gaps researchers should move quickly to fill in the coming weeks and months
Earth: Atmospheric Evolution of a Habitable Planet
Our present-day atmosphere is often used as an analog for potentially
habitable exoplanets, but Earth's atmosphere has changed dramatically
throughout its 4.5 billion year history. For example, molecular oxygen is
abundant in the atmosphere today but was absent on the early Earth. Meanwhile,
the physical and chemical evolution of Earth's atmosphere has also resulted in
major swings in surface temperature, at times resulting in extreme glaciation
or warm greenhouse climates. Despite this dynamic and occasionally dramatic
history, the Earth has been persistently habitable--and, in fact,
inhabited--for roughly 4 billion years. Understanding Earth's momentous changes
and its enduring habitability is essential as a guide to the diversity of
habitable planetary environments that may exist beyond our solar system and for
ultimately recognizing spectroscopic fingerprints of life elsewhere in the
Universe. Here, we review long-term trends in the composition of Earth's
atmosphere as it relates to both planetary habitability and inhabitation. We
focus on gases that may serve as habitability markers (CO2, N2) or
biosignatures (CH4, O2), especially as related to the redox evolution of the
atmosphere and the coupled evolution of Earth's climate system. We emphasize
that in the search for Earth-like planets we must be mindful that the example
provided by the modern atmosphere merely represents a single snapshot of
Earth's long-term evolution. In exploring the many former states of our own
planet, we emphasize Earth's atmospheric evolution during the Archean,
Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of
potential atmospheric trajectories into the distant future, many millions to
billions of years from now. All of these 'Alternative Earth' scenarios provide
insight to the potential diversity of Earth-like, habitable, and inhabited
worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook
of Exoplanet
- …