1,423 research outputs found
Permutation actions on Quiver Grassmannians for the equioriented cycle via GKM-theory
In our previous work, we equipped quiver Grassmannians for nilpotent representations of the equioriented cycle with an action of an algebraic torus. We show here that the equivariant cohomology ring is acted upon by a product of symmetric groups and we investigate this permutation action via GKM techniques. In the case of (type A) flag varieties, or Schubert varieties therein, we recover Tymoczko's results on permutation representations
Perturbative Chern-Simons Theory on Noncommutative R^3
A U(N) Chern-Simons theory on noncommutative is constructed
as a \q-deformed field theory. The model is characterized by two symmetries:
the BRST-symmetry and the topological linear vector supersymmetry. It is shown
that the theory is finite and \q_{\m\n}-independent at the one loop level and
that the calculations respect the restriction of the topological supersymmetry.
Thus the topological \q-deformed Chern-Simons theory is an example of a model
which is non-singular in the limit \q \to 0.Comment: 10 pages, 3 figures. Added loop calculation, conclusions unchanged,
some references adde
Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology
For optimal processing and design of entangled polymeric materials it is
important to establish a rigorous link between the detailed molecular
composition of the polymer and the viscoelastic properties of the macroscopic
melt. We review current and past computer simulation techniques and critically
assess their ability to provide such a link between chemistry and rheology. We
distinguish between two classes of coarse-graining levels, which we term
coarse-grained molecular dynamics (CGMD) and coarse-grained stochastic dynamics
(CGSD). In CGMD the coarse-grained beads are still relatively hard, thus
automatically preventing bond crossing. This also implies an upper limit on the
number of atoms that can be lumped together and therefore on the longest chain
lengths that can be studied. To reach a higher degree of coarse-graining, in
CGSD many more atoms are lumped together, leading to relatively soft beads. In
that case friction and stochastic forces dominate the interactions, and actions
must be undertaken to prevent bond crossing. We also review alternative methods
that make use of the tube model of polymer dynamics, by obtaining the
entanglement characteristics through a primitive path analysis and by
simulation of a primitive chain network. We finally review super-coarse-grained
methods in which an entire polymer is represented by a single particle, and
comment on ways to include memory effects and transient forces.Comment: Topical review, 31 pages, 10 figure
Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies
By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning’ paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and Body Mass Index (-0.002 kg/m2/year, 95%CI -0.009 to 0.005). Meta-analysis of short- term randomized controlled trials (RCTs, 129 comparisons) showed reduced total EI for LES- versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95%CI -122 to -66), with no difference versus water (-2 kcal, 95%CI -30 to 26). This was consistent with EI results from sustained intervention RCTs (10 comparisons). Meta-analysis of sustained intervention RCTs (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95%CI –2.28 to - 0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95%CI –2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human RCTs indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (e.g., water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also when compared with water
Non-commutative U(1) Super-Yang-Mills Theory: Perturbative Self-Energy Corrections
The quantization of the non-commutative N=1, U(1) super-Yang-Mills action is
performed in the superfield formalism. We calculate the one-loop corrections to
the self-energy of the vector superfield. Although the power-counting theorem
predicts quadratic ultraviolet and infrared divergences, there are actually
only logarithmic UV and IR divergences, which is a crucial feature of
non-commutative supersymmetric field theories.Comment: 18 pages, latex, uses feynmf package; references added, Wess-Zumino
gauge remove
Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges
In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices
- …