48 research outputs found

    Brownian Dynamics Simulation of Polydisperse Hard Spheres

    Full text link
    Standard algorithms for the numerical integration of the Langevin equation require that interactions are slowly varying during to the integration timestep. This in not the case for hard-body systems, where there is no clearcut between the correlation time of the noise and the timescale of the interactions. Starting from a short time approximation of the Smoluchowsky equation, we introduce an algorithm for the simulation of the overdamped Brownian dynamics of polydisperse hard-spheres in absence of hydrodynamics interactions and briefly discuss the extension to the case of external drifts

    Phase Transitions of Hard Disks in External Periodic Potentials: A Monte Carlo Study

    Full text link
    The nature of freezing and melting transitions for a system of hard disks in a spatially periodic external potential is studied using extensive Monte Carlo simulations. Detailed finite size scaling analysis of various thermodynamic quantities like the order parameter, its cumulants etc. are used to map the phase diagram of the system for various values of the density and the amplitude of the external potential. We find clear indication of a re-entrant liquid phase over a significant region of the parameter space. Our simulations therefore show that the system of hard disks behaves in a fashion similar to charge stabilized colloids which are known to undergo an initial freezing, followed by a re-melting transition as the amplitude of the imposed, modulating field produced by crossed laser beams is steadily increased. Detailed analysis of our data shows several features consistent with a recent dislocation unbinding theory of laser induced melting.Comment: 36 pages, 16 figure

    Spatial and temporal variation of fish assemblage associated with aquatic macrophyte patches in the littoral zone of the Ayapel Swamp Complex, Colombia

    Get PDF
    ABSTRACT: Aim: The purpose of the present study was to examine spatial and temporal variation in fish assemblage structure associated with aquatic macrophytes in the littoral zone of the ASC. Methods: Specimens were caught between January 2008 and February 2009, over four limnimetric moments, using both cast net and seine net. Data on the temperature, electrical conductivity, pH and dissolved oxygen was recorded for the characterization of the water mass in the sites. Results: A total of 34,151 specimens from 44 species were collected. The most abundant species were Eigenmannia virescens, Astyanax caucanus, Astyanax fasciatus, Roeboides dayi and Cyphocharax magdalenae, which together accounted for more than 75% of the sample. Temporal and spatial comparisons showed variation in the environmental conditions and highlighted the existence of heterogeneous abiotic conditions (p0.05) regarding the fish assemblage structure. The multivariate analysis showed no significant relationship between existing environmental conditions and the fish assemblage (p=0.04). The analysis also showed the absence of a relationship between the fish assemblage and environmental variables with respect to the flood pulse and sampling sites (p>0.05). Conclusion: The uniformity of the fish communities that inhabit aquatic macrophyte patches in the littoral region of the ASC may be related to the availability of suitable habitat in structural terms, that probably supports a more abundant and varied wildlife

    Non-local rheology in dense granular flows -- Revisiting the concept of fluidity

    Get PDF
    Granular materials belong to the class of amorphous athermal systems, like foams, emulsion or suspension they can resist shear like a solid, but flow like a liquid under a sufficiently large applied shear stress. They exhibit a dynamical phase transition between static and flowing states, as for phase transitions of thermodynamic systems, this rigidity transition exhibits a diverging length scales quantifying the degree of cooperatively. Several experiments have shown that the rheology of granular materials and emulsion is non-local, namely that the stress at a given location does not depend only on the shear rate at this location but also on the degree of mobility in the surrounding region. Several constitutive relations have recently been proposed and tested successfully against numerical and experimental results. Here we use discrete elements simulation of 2D shear flows to shed light on the dynamical mechanism underlying non-locality in dense granular flows

    Trophic polymorphism and water clarity in northern Australian Scortum (Pisces: Terapontidae)

    No full text
    The diets and relative intestinal length of two typically herbivorous terapontid fish from contrasting high and low clarity environments were compared. Fish of both species collected from high clarity habitats were almost exclusively herbivorous, whereas conspecifics from low clarity habitats were omnivores. Relative intestinal lengths in both species were significantly shorter in low clarity environments. Pronounced contrasts in water transparency have the apparent capacity to produce dietary niche shifts in these two species that in turn induce and maintain trophic polymorphisms in a riverine environment

    Climate change and its implications for Australia's freshwater fish

    Get PDF
    Freshwater environments and their fishes are particularly vulnerable to climate change because the persistence and quality of aquatic habitat depend heavily on climatic and hydrologic regimes. In Australia, projections indicate that the rate and magnitude of climate change will vary across the continent. We review the likely effects of these changes on Australian freshwater fishes across geographic regions encompassing a diversity of habitats and climatic variability. Commonalities in the predicted implications of climate change on fish included habitat loss and fragmentation, surpassing of physiological tolerances and spread of alien species. Existing anthropogenic stressors in more developed regions are likely to compound these impacts because of the already reduced resilience of fish assemblages. Many Australian freshwater fish species are adapted to variable or unpredictable flow conditions and, in some cases, this evolutionary history may confer resistance or resilience to the impacts of climate change. However, the rate and magnitude of projected change will outpace the adaptive capacities of many species. Climate change therefore seriously threatens the persistence of many of Australia's freshwater fish species, especially of those with limited ranges or specific habitat requirements, or of those that are already occurring close to physiological tolerance limits. Human responses to climate change should be proactive and focus on maintaining population resilience through the protection of habitat, mitigation of current anthropogenic stressors, adequate planning and provisioning of environmental flows and the consideration of more interventionist options such as managed translocations

    A review of the freshwater fishes of the Kimberley region of Western Australia

    No full text
    This paper provides an overview of the freshwater fishes of the remote and sparsely populated Kimberley region of Western Australia, an area that has been subject to minimal scientific surveys, most of which have occurred in the last 30 years. A total of 49 freshwater fish species are reported from the region, but this number will likely grow as a result of future discoveries. It is an endemic hotspot, with similar to 40% of the species found nowhere else; many of which are known from only a few localities. The fauna is dominated by members of the Terapontidae (10 species) and Eleotridae (10 species), followed by the Plotosidae (five species), Melanotaeniidae (five species), Atherinidae (four species) and Ambassidae (four species). Additionally, in terms of freshwater fishes of the Kimberley, there are two species each in the Toxotidae and Ariidae, and a single species from each of the Anguillidae, Clupeidae, Hemiramphidae, Belonidae, Apogonidae, Gobiidae and Soleidae. There are currently no introduced fishes found in any major catchments of the Kimberley, however, there are records of the Eastern Mosquitofish (Gambusia holbrooki) from Cape Leveque (Morgan et al. 2004c) and the Redclaw Crayfish (Cherax quadquicarinatus), which have recently been found within the Ord River basin (Doupe et al. 2004)

    Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae)

    No full text
    The ecological opportunities associated with transitions across the marine–freshwater interface are regarded as an important catalyst of diversification in a range of aquatic taxa. Here, we examined the role of these major habitat transitions and trophic diversification in a radiation of Australasian fishes using a new molecular phylogeny incorporating 37 Terapontidae species. A combined mitochondrial and nuclear gene analysis yielded a well-supported tree with most nodes resolved. Ancestral terapontids appear to have been euryhaline in habitat affiliation, with a single transition to freshwater environments producing all Australasian freshwater species. Mapping of terapontid feeding modes onto the molecular phylogeny–predicted carnivorous dietary habits was displayed by ancestral terapontids, which subsequently diversified into a range of additional carnivorous, omnivorous, herbivorous and detritivorous dietary modes upon transition to freshwater habitats. Comparative analyses suggested that following the freshwater invasion, the single freshwater clade has exhibited an increased rate of diversification at almost three times the background rate evident across the rest of the family. The marine–freshwater transition within Terapontidae appears to have resulted in substantial dietary radiation in freshwater environments, as well as increased lineage diversification rates relative to euryhaline–marine habitats
    corecore