266 research outputs found

    Experimental Characterization of Real Driving Cycles in a Light-Duty Diesel Engine under Different Dynamic Conditions

    Full text link
    [EN] This paper studies the behavior of a Euro 6 diesel engine tested under dynamic conditions corresponding to different real driving emissions (RDE) scenarios. RDE cycles have been performed in an engine test bench by simulating its operation in a long van application. A computer tool has been designed to define the cycle accounting for different dynamic characteristics and driver behaviors to study their influence on CO2 and pollutant emissions, particularly CO, THC, and NOX. Different dynamic parameters have been established in terms of power, torque, engine speed, or vehicle speed. Additionally, a tool to estimate the emission of an RDE cycle from steady-state maps has been developed, helping to identify emission trends in a clearer way. Finally, the conclusions suggest that driving patterns characterized by lower engine speeds lead to fewer emissions. In addition, the analysis of RDE cycles from stationary maps helps to estimate the final tailpipe emissions of CO2 and NOX, offering the possibility to rely on tests carried out on engine test bench, dynamometer, or on the road.FundingThis research has been supported by Grant PID2020-114289RB-I00 funded by MCIN/AEI/10.13039/501100011033.Luján, JM.; Piqueras, P.; De La Morena, J.; Redondo-Puelles, F. (2022). Experimental Characterization of Real Driving Cycles in a Light-Duty Diesel Engine under Different Dynamic Conditions. Applied Sciences. 12(5):1-20. https://doi.org/10.3390/app1205247212012

    Molecular Segmentation of the Spinal Trigeminal Nucleus in the Adult Mouse Brain

    Get PDF
    © 2021. The authors. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the Published version of a Published Work that appeared in final form in Frontiers in Neuroanatomy. To access the final edited and published work see https://doi.org/10.3389/fnana.2021.785840The trigeminal column is a hindbrain structure formed by second order sensory neurons that receive afferences from trigeminal primary (ganglionic) nerve fibers. Classical studies subdivide it into the principal sensory trigeminal nucleus located next to the pontine nerve root, and the spinal trigeminal nucleus which in turn consists of oral, interpolar and caudal subnuclei. On the other hand, according to the prosomeric model, this column would be subdivided into segmental units derived from respective rhombomeres. Experimental studies have mapped the principal sensory trigeminal nucleus to pontine rhombomeres (r) r2-r3 in the mouse. The spinal trigeminal nucleus emerges as a plurisegmental formation covering several rhombomeres (r4 to r11 in mice) across pontine, retropontine and medullary hindbrain regions. In the present work we reexamined the issue of rhombomeric vs. classical subdivisions of this column. To this end, we analyzed its subdivisions in an AZIN2-lacZ transgenic mouse, known as a reference model for hindbrain topography, together with transgenic reporter lines for trigeminal fibers. We screened as well for genes differentially expressed along the axial dimension of this structure in the adult and juvenile mouse brain. This analysis yielded genes from multiple functional families that display transverse domains fitting the mentioned rhombomeric map. The spinal trigeminal nucleus thus represents a plurisegmental structure with a series of distinct neuromeric units having unique combinatorial molecular profiles

    Phytoplankton composition in a neritic area of the Balearic Sea (Western Mediterranean)

    Get PDF
    From September 2000 to September 2001 the concentration of chlorophyll a, and the abundance and composition of the phytoplanktonic community was studied in a neritic station of the Mallorca Channel (Western Mediterranean). Sampling was performed approximately every 12 days. Chlorophyll a concentration and phytoplankton abundance reached maxima of 1.79 mg L2l and 352 cells mL21, respectively. It was a relatively productive period, as a result of the high convective mixing in winter and the prevalence of northern waters during most of the cycle. Phytoplankton proliferations (chlorophyll-a concentration .1 mg L21) were detected in January, February, March and June. Those blooms mainly happened under the influence of northern waters, with the exception of the February proliferation, when mixing conditions were found. During bloom conditions it highlights the presence of coccolithophores as proliferation precursors. During no-bloom situations the phytoplankton community was mainly constituted by nanoplanktonic flagellated forms. The Winter Mixing period was dominated by different groups of nanoflagellates, including coccolithophores, undetermined flagellates and dinoflagellates. However, in the most oligotrophic conditions (from April until November) dinoflagellates were clearly dominant, except in the DCM in summer where diatoms prevailed.Versión del edito

    Radial and tangential migration of telencephalic somatostatin neurons originated from the mouse diagonal area

    Get PDF
    The telencephalic subpallium is the source of various GABAergic interneuron cohorts that invade the pallium via tangential migration. Based on genoarchitectonic studies, the subpallium has been subdivided into four major domains: striatum, pallidum, diagonal area and preoptic area (Puelles et al. 2013; Allen Developing Mouse Brain Atlas), and a larger set of molecularly distinct progenitor areas (Flames et al. 2007). Fate mapping, genetic lineage-tracing studies, and other approaches have suggested that each subpallial subdivision produces specific sorts of inhibitory interneurons, distinguished by differential peptidic content, which are distributed tangentially to pallial and subpallial target territories (e.g., olfactory bulb, isocortex, hippocampus, pallial and subpallial amygdala, striatum, pallidum, septum). In this report, we map descriptively the early differentiation and apparent migratory dispersion of mouse subpallial somatostatin-expressing (Sst) cells from E10.5 onward, comparing their topography with the expression patterns of the genes Dlx5, Gbx2, Lhx7-8, Nkx2.1, Nkx5.1 (Hmx3), and Shh, which variously label parts of the subpallium. Whereas some experimental results suggest that Sst cells are pallidal, our data reveal that many, if not most, telencephalic Sst cells derive from de diagonal area (Dg). Sst-positive cells initially only present at the embryonic Dg selectively populate radially the medial part of the bed nucleus striae terminalis (from paraseptal to amygdaloid regions) and part of the central amygdala; they also invade tangentially the striatum, while eschewing the globus pallidum and the preoptic area, and integrate within most cortical and nuclear pallial areas between E10.5 and E16.5.This work was funded by the Spanish Ministry of Science and Innovation grant BFU2008-04156, and SENECA Foundation contract 0458/GERM/06-10891 to L.P.; and the Local Government of Castilla-La Mancha grant PII1I09-0065-8194 to C.D. Infrastructure support provided by the University of Murcia and Castilla-La Mancha is also acknowledged

    Response of the Calanoid Copepod Clausocalanus furcatus, to Atmospheric Deposition Events: Outcomes from a Mesocosm Study

    Get PDF
    Atmospheric deposition is assumed to stimulate heterotrophic processes in highly oligotrophic marine systems, controlling the dynamics and trophic efficiency of planktonic food webs, and is expected to be influenced by climate change. In the course of an 8-day mesocosm experiment, we examined the channeling, of the Saharan dust (SD) and mixed aerosols (A) effects on microplankton up to the copepod trophic level, in the highly oligotrophic Eastern Mediterranean Sea. Based on mesocosms with SD and A treatments, we evaluated the feeding response of the dominant copepod Clausocalanus furcatus every other day. We hypothesized that increased food availability under atmospheric deposition would result in increased copepod ingestion rates, selectivity and production. Overall, no robust pattern of food selection was documented, and daily rations on the prey assemblage of all mesocosms were very low indicating severe food limitation of C. furcatus. Although increased food availability was not true, after few days ingestion of ciliates was maximized, followed by egg production, in both the SD and A treatments, indicating their importance in the diet of this copepod as well as a response of C. furcatus feeding performance. Our results help in understanding the trophic efficiency of marine food webs in ultra-oligotrophic environments under atmospheric deposition. We suggest that future mesocosm research in oligotrophic waters should consider more than one copepod speciesVersión del edito

    Zooplankton Abundance and Diversity in the Tropical and Subtropical Ocean

    Get PDF
    The abundance and composition of zooplankton down to 3000 m depth was studied in the subtropical and tropical latitudes across the Atlantic, Pacific and Indian Oceans (35 N–40 S). Samples were collected from December 2010 to June 2011 during the Malaspina Circumnavigation Expedition. Usually, low abundances were observed with the highest values found in the North Pacific Ocean, Benguela, and o Mauritania, and the lowest in the South Pacific Ocean. No significant di erences in abundance and zooplankton composition were found among oceans, with depth being consistently the most important factor a ecting their distribution. Each depth strata were inhabited by distinct copepod assemblages, which significantly di ered among the strata. The contribution of copepods to the zooplankton community increased with the depth although, as expected, their abundance strongly decreased. Among the copepods, 265 species were identified but 85% were rare and contributed less than 1% in abundance. Clausocalanus furcatus and Nannocalanus minor dominated the epipelagic strata. Pleuromamma abdominalis and Lucicutia clausi were of importance in the mesopelagic layer, and Pareucalanus, Triconia, Conaea and Metridia brevicauda in the bathypelagic layer. Our results provide a global-scale assessment of copepod biodiversity and distribution, providing a contemporary benchmark to follow future ocean changes at low latitudes

    Zooplankton and Micronekton Active Flux Across the Tropical and Subtropical Atlantic Ocean

    Get PDF
    Quantification of the actual amount of carbon export to the mesopelagic layer by both zooplankton and micronekton is at present a gap in the knowledge of the biological pump. These organisms perform diel vertical migrations exporting carbon through respiration, excretion, mortality, and egestion during their residence at depth. The role of zooplankton in active flux is nowadays partially assessed. However, micronekton active flux is scarcely known and only a few studies addressed this downward transport. Even less is known about the capacity of both communities to export carbon in the ocean. Here, we show the results of zooplankton and micronekton active flux across a productivity gradient in the tropical and subtropical Atlantic Ocean. Biomass vertical distribution from the surface up to 800 m depth by day and night was studied during April 2015 in a transect from 9 degrees S to 25 degrees N, covering from the quite oligotrophic zone off Brazil to the meso- and eutrophic areas of the equator, Guinea Dome, and the oceanic upwelling off Northwest Africa. Zooplankton and micronekton migrant biomass was estimated from day and night catches at different layers of the water column using MOCNESS-1 (1 m(2) mouth area) and Mesopelagos (35 m(2)) nets, respectively. Respiratory flux was assessed by measuring the enzymatic activity of the electron transfer system (ETS) of organisms at depth. Results showed a close relationship between migrant biomass and respiratory flux in zooplankton and micronekton as expected. Using a rather conservative 50% of efficiency for the net used to capture micronekton, respiratory flux resulted in similar values for both communities. Gravitational (passive) flux measured using sediment traps increased from the oligotrophic toward the meso- and eutrophic zones. Total active flux (including respiration and estimated mortality, excretion, and gut flux) by zooplankton and micronekton accounted for about 25% of total flux (passive plus active) in oligotrophic zones. Total active flux also increased toward meso- and eutrophic zones, reaching about 80% of total flux and being at least twofold higher than passive flux. These results alert about an important underestimation of the ocean biological pump using only passive flux measurements

    Abundance and Structure of the Zooplankton Community During a Post-eruptive Process: The Case of the Submarine Volcano Tagoro (El Hierro; Canary Islands), 2013-2018

    Get PDF
    The mesozooplankton community was analyzed over a 6-year period (2013-2018) during the post-eruptive stage of the submarine volcano Tagoro, located south of the island of El Hierro (Canary Archipelago, Spain). Nine cruises from March 2013 to March 2018 were carried out in two different seasons, spring (March-April) and autumn (October). A high-resolution study was carried out across the main cones of Tagoro volcano, as well as a large number of reference stations surrounding El Hierro (unaffected by the volcano). The zooplankton community at the reference stations showed a high similarity with more than 85% of the variation in abundance and composition attributable to seasonal differences. Moreover, our data showed an increase in zooplankton abundance in waters affected by the volcano with a higher presence of non-calanoid copepods and a decline in the diversity of the copepod community, indicating that volcanic inputs have a significant effect on these organisms. Fourteen different zooplankton groups were found but copepods were dominant (79%) with 59 genera and 170 species identified. Despite the high species number, less than 30 presented a larger abundance than 1%. Oncaea and Clausocalanus were the most abundant genera followed by Oithona and Paracalanus (60%). Nine species dominated (>2%): O. media, O. plumifera, and O. setigera among the non-calanoids and M. clausi, P. nanus, P. parvus, C. furcatus, C. arcuicornis, and N. minor among the calanoids. After the initial low abundance of the copepods as a consequence of the eruption, an increase was observed in the last years of the study, where besides the small Paracalanus and Clausocalanus, the Cyclopoids seem to have a good adaptive strategy to the new water conditions. The increase in zooplankton abundance and the decline in the copepod diversity in the area affected by the volcano indicate that important changes in the composition of the zooplankton community have occurred. The effect of the volcanic emissions on the different copepods was more evident in spring when the water was cooler and the mixing layer was deeper. Further and longer research is recommended to monitor the zooplankton community in the natural laboratory of the Tagoro submarine volcano.En prens

    Vertical biogeographical overview of the Zooplankton community across the Atlantic, Pacific and Indian ocean (35ºN-40ºS)

    Get PDF
    From December 2010 to June 2011 the mesozooplankton has been sampled at the deep Atlantic, Indian and Pacific Ocean (*). From surface to 3000 m depth a HYDROBIOSS multinet was used distinguishing the epipelagic (77%), mesopelagic (11%) and bathypelagic zones (11%), where five layers were usually sampled (0-200, 200-500, 500-1000, 1000-2000 and 2000-3000 m depth). Among the three oceans, no large differences on abundance were found when taxonomic groups were considered, being always depth the most important factor affecting the vertical zooplankton distribution. The zooplankton abundance strongly decreased with depth and very low abundance was found at deeper waters. Very irregular spatial distribution was observed all across the three oceans, finding the lowest abundance in the south and western Pacific region. Copepods were always the most abundant contributors of the zooplankton community (84%) and more than 260 species identified. They were followed by chaetognaths (5%), siphonophores (3%), ostracods (2%) and euphausiids (1%). In a biogeographical overview, the vertical distribution of the most abundant copepods is analyzed, finding the largest copepods at deeper stratum, where small cosmopolitan copepods were also found
    corecore