1,607 research outputs found

    Study on the Usefulness of Sit to Stand Training in Self-directed Treatment of Stroke Patients

    Get PDF
    Abstract. [Purpose] This study sought to determine the usefulness of sit to stand training in self-directed treatment of stroke patients. It examined the effect that sit to stand training has on balance and functional movement depending on the form of support surfaces. [Subjects and Methods] Thirty stroke patients were randomly sampled and divided into an unstable support surface group (15) and stable support surface group (15). In order to identify the effect depending on the form of support surfaces, 15 minutes of support surface training plus + 15 minutes of free gait training was performed. [Results] The results of the unstable support surface training showed that the corresponding sample t-test results were significant for the 7-item 3-point Berg balance scale, timed Up and Go test, and 6-minute walking test. The independent samples t-test, showed that there were significant outcomes in step length on the affected side, and step length on the unaffected side. [Conclusion] In conclusion, the sit to stand training on stable support surfaces was not as effective as the training using unstable support surfaces, but it is a simple and stable exercise with less risk of falls during training. It can also be performed alone by the patient in order to increase endurance and dynamic balance ability. Therefore, it is considered a useful exercise that can be performed alone by the patient outside the treatment room

    Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports

    Get PDF
    Hydrogen, currently produced from the reforming of fossil fuel resources, is a significant source for clean energy and the chemical industry. It is promising to develop a high-efficiency hydrogen production process from renewable biomass for sustainable development. This research reports that catalyst support acidity could strongly enhance the hydrogen production from the biomass gasification of wood sawdust. For minimizing the influence of the Ni particle size for the biomass gasification, the uniform Ni nanoparticles around 2–3 nm were loaded into one type of mesoporous support MCM-41 with various acidity. Ni/H-[Al] MCM-41 with a large amount of Brϕnsted acid sites contributed 2–3 times higher hydrogen yield (21.6 mmol H2 g−1 sample) than that on Ni/H-[Si]MCM-41 with a small amount of very weak acidic surface SiOH groups (9.8 mmol H2 g−1 sample) and that on nonacidic Ni/Na-[Si]MCM-41 (6.7 mmol H2 g−1 sample). The surface acid sites on supports could generate bifunctional catalysts and were proposed to show two functions for enhancing the hydrogen production: 1) help to crack and transfer the pyrolysis chemicals into smaller compounds for more efficient reforming on the Ni surface inside nanopores; 2) enhance the support and Ni interaction for better reduction property and surface activity of Ni nanoparticles and improve the reforming performance. The obtained Ni/MCM-41 catalysts were quite stable and no sintering has been observed after the gasification at 800 °C, and only a low coke deposition has been detected

    Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports

    Get PDF
    Hydrogen, currently produced from the reforming of fossil fuel resources, is a significant source for clean energy and the chemical industry. It is promising to develop a high-efficiency hydrogen production process from renewable biomass for sustainable development. This research reports that catalyst support acidity could strongly enhance the hydrogen production from the biomass gasification of wood sawdust. For minimizing the influence of the Ni particle size for the biomass gasification, the uniform Ni nanoparticles around 2–3 nm were loaded into one type of mesoporous support MCM-41 with various acidity. Ni/H-[Al] MCM-41 with a large amount of Brϕnsted acid sites contributed 2–3 times higher hydrogen yield (21.6 mmol H2 g−1 sample) than that on Ni/H-[Si]MCM-41 with a small amount of very weak acidic surface SiOH groups (9.8 mmol H2 g−1 sample) and that on nonacidic Ni/Na-[Si]MCM-41 (6.7 mmol H2 g−1 sample). The surface acid sites on supports could generate bifunctional catalysts and were proposed to show two functions for enhancing the hydrogen production: 1) help to crack and transfer the pyrolysis chemicals into smaller compounds for more efficient reforming on the Ni surface inside nanopores; 2) enhance the support and Ni interaction for better reduction property and surface activity of Ni nanoparticles and improve the reforming performance. The obtained Ni/MCM-41 catalysts were quite stable and no sintering has been observed after the gasification at 800 °C, and only a low coke deposition has been detected

    Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass

    Get PDF
    Producing hydrogen from catalytic gasification of biomass represents an interesting process to facilitate the development of hydrogen economy. However, the design of catalyst is a key challenge for this technology. In this work, cost-effective Ca added Ni-based catalysts were developed and studied for producing hydrogen with a fixed-bed reactor. The relationship between Ca addition and the performance of catalyst in terms of the yield of hydrogen and catalyst deactivation (metal sintering and coke formation) was studied. The results showed that hydrogen production was largely enhanced when Ca was added, as the yield of hydrogen was enhanced from 10.4 to 18.2 mmol g−1 sample in the presence of Ca-based catalyst. However, the yield and concentration of hydrogen were kept at similar levels with the increase of Ca. By normalizing the yield of hydrogen in relation to the amount of Ni presented inside the catalyst, the hydrogen yield per mole of nickel was increased from 50 g Ni −1(0.1Ca catalyst) to 80 g Ni−1 (0.8Ca catalyst) when the Ca addition was increased from 10 mol% to 80 mol%. TPO-FTIR analysis of the experimented catalysts showed that 0.5 Ca catalyst had the highest amount of coke formation, in particular, most of the deposited carbons were amorphous which could deactivate the catalyst seriously. It is therefore concluded that the addition of cost-effective Ca could enhance the yield of hydrogen from biomass gasification. However, the concentration of Ca in the catalyst needs to be controlled to mitigate the generation of coke on the used catalyst

    Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration.

    Get PDF
    Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche

    Cellular Reactive Oxygen Species Inhibit MPYS Induction of IFNβ

    Get PDF
    Many inflammatory diseases, as well as infections, are accompanied by elevation in cellular levels of Reactive Oxygen Species (ROS). Here we report that MPYS, a.k.a. STING, which was recently shown to mediate activation of IFNβ expression during infection, is a ROS sensor. ROS induce intermolecular disulfide bonds formation in MPYS homodimer and inhibit MPYS IFNβ stimulatory activity. Cys-64, -148, -292, -309 and the potential C88xxC91 redox motif in MPYS are indispensable for IFNβ stimulation and IRF3 activation. Thus, our results identify a novel mechanism for ROS regulation of IFNβ stimulation

    Characterization of the Endothelial Cell Cytoskeleton following HLA Class I Ligation

    Get PDF
    Vascular endothelial cells (ECs) are a target of antibody-mediated allograft rejection. In vitro, when the HLA class I molecules on the surface of ECs are ligated by anti-HLA class I antibodies, cell proliferation and survival pathways are activated and this is thought to contribute to the development of antibody-mediated rejection. Crosslinking of HLA class I molecules by anti-HLA antibodies also triggers reorganization of the cytoskeleton, which induces the formation of F-actin stress fibers. HLA class I induced stress fiber formation is not well understood.The present study examines the protein composition of the cytoskeleton fraction of ECs treated with HLA class I antibodies and compares it to other agonists known to induce alterations of the cytoskeleton in endothelial cells. Analysis by tandem mass spectrometry revealed unique cytoskeleton proteomes for each treatment group. Using annotation tools a candidate list was created that revealed 12 proteins, which were unique to the HLA class I stimulated group. Eleven of the candidate proteins were phosphoproteins and exploration of their predicted kinases provided clues as to how these proteins may contribute to the understanding of HLA class I induced antibody-mediated rejection. Three of the candidates, eukaryotic initiation factor 4A1 (eIF4A1), Tropomyosin alpha 4-chain (TPM4) and DDX3X, were further characterized by Western blot and found to be associated with the cytoskeleton. Confocal microscopy analysis showed that class I ligation stimulated increased eIF4A1 co-localization with F-actin and paxillin.Colocalization of eIF4A1 with F-actin and paxillin following HLA class I ligation suggests that this candidate protein could be a target for understanding the mechanism(s) of class I mediated antibody-mediated rejection. This proteomic approach for analyzing the cytoskeleton of ECs can be applied to other agonists and various cells types as a method for uncovering novel regulators of cytoskeleton changes

    Three little pieces for computer and relativity

    Full text link
    Numerical relativity has made big strides over the last decade. A number of problems that have plagued the field for years have now been mostly solved. This progress has transformed numerical relativity into a powerful tool to explore fundamental problems in physics and astrophysics, and I present here three representative examples. These "three little pieces" reflect a personal choice and describe work that I am particularly familiar with. However, many more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation: 100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech Republic. To appear in the Proceedings (Edition Open Access). Collects results appeared in journal articles [72,73, 122-124

    A statistical framework for integrating two microarray data sets in differential expression analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different microarray data sets can be collected for studying the same or similar diseases. We expect to achieve a more efficient analysis of differential expression if an efficient statistical method can be developed for integrating different microarray data sets. Although many statistical methods have been proposed for data integration, the genome-wide concordance of different data sets has not been well considered in the analysis.</p> <p>Results</p> <p>Before considering data integration, it is necessary to evaluate the genome-wide concordance so that misleading results can be avoided. Based on the test results, different subsequent actions are suggested. The evaluation of genome-wide concordance and the data integration can be achieved based on the normal distribution based mixture models.</p> <p>Conclusion</p> <p>The results from our simulation study suggest that misleading results can be generated if the genome-wide concordance issue is not appropriately considered. Our method provides a rigorous parametric solution. The results also show that our method is robust to certain model misspecification and is practically useful for the integrative analysis of differential expression.</p
    • …
    corecore