1,960 research outputs found
Analysis of the Brinkman-Forchheimer equations with slip boundary conditions
In this work, we study the Brinkman-Forchheimer equations driven under slip
boundary conditions of friction type. We prove the existence and uniqueness of
weak solutions by means of regularization combined with the Faedo-Galerkin
approach. Next we discuss the continuity of the solution with respect to
Brinkman's and Forchheimer's coefficients. Finally, we show that the weak
solution of the corresponding stationary problem is stable
Recommended from our members
Multi-target out-of-sequence data association
In data fusion systems, one often encounters measurements of past target locations and then wishes to deduce where the targets are currently located. Recent research on the processing of such out-of-sequence data has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships between the algorithms so that any approximations made are explicit
Fermions and Type IIB Supergravity On Squashed Sasaki-Einstein Manifolds
We discuss the dimensional reduction of fermionic modes in a recently found
class of consistent truncations of type IIB supergravity compactified on
squashed five-dimensional Sasaki-Einstein manifolds. We derive the lower
dimensional equations of motion and effective action, and comment on the
supersymmetry of the resulting theory, which is consistent with N=4 gauged
supergravity in , coupled to two vector multiplets. We compute fermion
masses by linearizing around two vacua of the theory: one that breaks
N=4 down to N=2 spontaneously, and a second one which preserves no
supersymmetries. The truncations under consideration are noteworthy in that
they retain massive modes which are charged under a U(1) subgroup of the
-symmetry, a feature that makes them interesting for applications to
condensed matter phenomena via gauge/gravity duality. In this light, as an
application of our general results we exhibit the coupling of the fermions to
the type IIB holographic superconductor, and find a consistent further
truncation of the fermion sector that retains a single spin-1/2 mode.Comment: 43 pages, 2 figures, PDFLaTeX; v2: added references, typos corrected,
minor change
N=8 Superspace Constraints for Three-dimensional Gauge Theories
We present a systematic analysis of the N=8 superspace constraints in three
space-time dimensions. The general coupling between vector and scalar
supermultiplets is encoded in an SO(8) tensor W_{AB} which is a function of the
matter fields and subject to a set of algebraic and super-differential
relations. We show how the conformal BLG model as well as three-dimensional
super Yang-Mills theory provide solutions to these constraints and can both be
formulated in this universal framework.Comment: 34 + 10 pages; added references, minor correction
Cell arrest and cell death in mammalian preimplantation development
The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue.
To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances.
In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
The extraordinary evolutionary history of the reticuloendotheliosis viruses
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events
Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer
Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH
Reaction rates and transport in neutron stars
Understanding signals from neutron stars requires knowledge about the
transport inside the star. We review the transport properties and the
underlying reaction rates of dense hadronic and quark matter in the crust and
the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of
Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes,
references updated, overview graphic added in the introduction, improvements
in Sec IV.A.
(1,0) superconformal models in six dimensions
We construct six-dimensional (1,0) superconformal models with non-abelian
gauge couplings for multiple tensor multiplets. A crucial ingredient in the
construction is the introduction of three-form gauge potentials which
communicate degrees of freedom between the tensor multiplets and the Yang-Mills
multiplet, but do not introduce additional degrees of freedom. Generically
these models provide only equations of motions. For a subclass also a
Lagrangian formulation exists, however it appears to exhibit indefinite metrics
in the kinetic sector. We discuss several examples and analyze the excitation
spectra in their supersymmetric vacua. In general, the models are
perturbatively defined only in the spontaneously broken phase with the vev of
the tensor multiplet scalars serving as the inverse coupling constants of the
Yang-Mills multiplet. We briefly discuss the inclusion of hypermultiplets which
complete the field content to that of superconformal (2,0) theories.Comment: 30 pages, v2: Note, some comments and references adde
- …
