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Abstract — In data fusion systems, one often encounters meatt-of-sequence data more efficiently than an algorithr tha
surements of past target locations and then wishes to dedwimply reprocesses all the data. It should be acknowledged
where the targets are currently located. Recent research on tigat several of the algorithms discussed can be criticised a
processing of suclout-of-sequencelata has culminated in the not achieving this aim. However, the pursuit of a common

development of a number of algorithms for solving the asso?]'nderstanding and the use of only explicit approximation
ated tracking problem. This paper reviews these different aPotivates this paper
ar- ’

proaches in a common Bayesian framework and proposes an ) ] . . .
chitecture that orthogonalises the data association and out-of- S0, In section 2 a framework is described that is capa-
sequence problems such that any combination of solutions to thB4 Of describing the previous approaches to solving the
two problems can be used together. The emphasis is not on adeteblems associated with out-of-sequence measurements.
cating one approach over another on the basis of computation@ection 3 demonstrates that this framework can accommo-
expense, but rather on understanding the relationships betwegaite the wide range of existing algorithms and discusses
the algorithms so that any approximations made are explicit.  these algorithms within this framework. It is shown, in sec-
Keywords: Sensor fusion, tracking, data association, out-ofionS 4 and 5 respectively, to be straightforward to extend
sequence measurementS, parncle f||ter, Ka|man f||ter thIS fl’amework to COﬂSIder da.ta association a.nd mult'ple
targets. Finally, conclusions are drawn in section 6.

1 Introduction

There are a number of data fusion scenarios which resul2n Stochastic Dynamic Systems
a multi-target tracker receiving measurements of where the

targets were previously located. In the general case,shisry pegin, consider a single target. At time,the state of
due to the identity of the sensor that generates the measyfg@-target is:,.. There exists an equation, which enables the
ments of a target affecting the length of time for the infofytyre state of the target, -, to be described in terms of the

mation of where the target was to propagate to the trackgfevious state and some random quantity, , :
This can be caused by a number of specific effects: com-

munications delays from the sensor to the tracker could be
sensor dependent; acoustic propagation could result-in dif
ferent sensors observing the current state of the target at . .
different times; formation of tracks at a sensor could intrQ AL one ofa nu.mber of |terat|on9}.;, a mea;uremenyk,
duce delay in sending these tracks to the fusion node (off pfeceived. This measurement Is described in terms of
because the sensor is a rotating radar with measurement: St‘?te at the corresponding time, , and some random
specific time stamps). quantity,w;:

The result is that tracking in the presence of out-of- Yp = h (s, wk) (2)
sequence measurements has received considerable interest
over recent years and a number of different approaches haveiven these equations, one can infer the associated prob-
been proposed[1-4]. Here, these approaches are reviewsility densities, namely (x-|x, ) andp (yx|x,, ); @ minor
in the context of a common Bayesian definition of the prolyoint is that equations 1 and 2 may convey more informa-
lem that is similar to that described in [3,4]. The comtion than the probability densities though for all estiroati
mon definition gives insight into the relative merits of preproblems, including all tracking problems, the two descrip
vious approaches and makes it possible to extend thesetfyns can be considered equivaferithese densities define
proaches to provide efficient solutions to the general multhe probability density over the joint distribution of thha+t
target out-of-sequence data-association problem. Tteesejgctory of the target and the measurements received up to
lutions are efficient in that they exploit the structure daf th
underlying (Markov-chain) model for the targets. Much of *Equations 1 and 2 define the physical causal process rather
the research is motivated by the desire to be able to procees just the resulting dependencies.

Ty = f (‘/I’.T76T/7T) (1)
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Fig. 1: A stochastic dynamic system foz,, ..., y1.x). Fig. 3: A stochastic dynamic system for
p ($71:7K+1 |y1:K+1) .
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Fig. 2: A stochastic dynamic system fofx -, .- [y1.x)-
Fig. 4: A stochastic dynamic system fofz, |y1.x ).

some point K. This density can be factorised as follows:
The dependency structure means that.,, .., |y1.x)

P @rirns Y1) =P @rirn ) P Y1k [ Trirne ) (3) canbe expressed very succinctly; one does not need to con-
" x sider the joint distribution explicitly, but can fully de&rthe
_ distribution using conditional distributions of parentate)
=p(z,) [[ 2 (@rilzn_,) T] 0 (Wel2n) nodes on child (state) nodes. This structure is that exgloit
(4) Dy fixed-lag smoothing algorithms such as the Kalman(6]
and particle smoother[7]. Note that such joint distribotio
wherep (z, ) is some initial priory..x = {y1,y2,...yx} are often highly correlated; uncertainty over the value of a
is the history of (as yet unobserved) measurements &@#i¥en state is strongly affected by the values of its neigh-
Tryire = %7, Trys- ., Try + IS the history of the statesbours (in time).
at the times corresponding to these measurements. Thi¥Vhen the measurements are received in time order, the
stochastic dynamic systecan be drawn diagrammaticallychain can simply be augmented with the new nodes for the
as graphical model, a set of interconnected nodes as in figte and the measurement. The fact that the new measure-
ure 1. The nodes represent quantities of interest and fAent is then observed could then be used to deduce the pa-
arrows indicate dependencies of one variable on anothi@mneters of the chain. The new chain that would result is
The reader unfamiliar with graphical models should ref&hown in figure 3.
to one of the many texts available on the subject[5]. SomeRemoving an unobserved node from the network is
basic understanding of such models will be assumed fr@fluivalent to integrating out the corresponding variable
this point. from the joint distribution. When this is conducted, the
The graphical model identifies the dependency structutgildren of the node become new children of the parents
of the variables. The arrows point from child nodes to paff the node; the parent node gets its old grandchildren as its
ent nodes and Convey the dependency structure. Th|s Sth Chi|dl‘en! In tracking, one iS Only interested in the f||'
cific kind of Markov chain structure is such that the currefgred distributionp (z-, [y1:x). So, one can integrate out
state is a sufficient statistic of the past; if one knows ttre cdhe nodes corresponding to each of the other states of the
rent state exactly, there is no more information to be gain&fget in turn. The resulting chain is shown in figure 4.
by knowing previous states of the system. One can then augment this chain to
Often one observes the true value of a variable and th&m P (Trics Tracyr s YK +11Y1:K) and then
one wants to update the distribution over all the other uR{Zrx, Trs ., [y1:5+1) @nd p (zr.,, lyr:x41), Which
observed variables (which are referred tohiddenin the are shown in figures 5, 6 and 7 respectively.
graphical model literature) in the light of this observa- This process is no more than that conducted by a Kalman
tion. With the model we are considering, we could imagilter or particle filter, which both storg (z., [y1.x) as a
ine that the measurements,. -, could all be received at sufficient statistic op (zr, .-, |y1.x) in terms of the capac-
once and one would then desire the distribution of the othiéf to calculatep (zr,_, [y1:x+1)-
unobserved variables (the states) given the measurements,
ie.p (.., [y1.5)- In the diagrammatic language of graph#-1  Out-of-Sequence Measurements
ical models, this is represented using filled nodes as shoine presence of out-of-sequence measurements compli-
in figure 2. cates this process. An out-of-sequence measurement refers

k=2 k=1
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Fig. 8: A stochastic dynamic system fofx .-, |y1.x)-
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Fig. 5: A stochastic dynamic system for XT1XT2 XTFK_ 1XTk+>§T|:k
b (xTK7xTK+17yK+1|y1:K)-
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Fig. 9: A stochastic dynamic system for
p (leiTK+1>yK+1|y1:K)-

to a state at a point in the past; if th& +1)th measurement

is the first out-of-sequence measurement to be received then
711 < Tk . Inthe more general case, the quantity of inter-
est is often them (2., [y1:x41), WhereTprsr > 7/
forall K’ < K +1 soTgx+: is the time of the modRecent

in time measurement. Essentially, one wants to revise the
belief about where the target is given a measurement of

Y1 Y, Yio Y+t where it was.
In this enwronmentp(xT Y1 K) is not a suffi-
Fig. 6: A stochastic dynamic system forcient statistic ofp (ar,.r [y1.5c) in terms of the capac-
p(lfm733m+1|yl;z<+1)- ity to calculatep (azTRK+1 |y14K+1) However, it is still

possible to augment the chain (shown in termsmf

in figure 8) to formp (z;,.r,c,,, Yk +1|y1:5) and then
D ($71:TK+1 |y1:K+1), which are shown in figures 9 and 10
respectively.

So, this means that on receipt of an out-of-sequence
measurement, there is a need to update the parameters of
the chain. A naive implementation of an out-of-sequence
measurement processing algorithm then necessitates re-
processing of the data from the time of the out-of-sequence
measurement to the last time. Research has focused on

X investigating the potential for more efficient alternative
Tk+1 schemes.

o Xy 1XT 2 XTFK- 1XTk +>§TFk
Y1 Y5 Yo Y1

Fig. 7: A stochastic dynamic system fofz -, ., |y1.x+1)-
Y12 el Y

Fig. 10: A stochastic dynamic system for
P ($71:7K+1 |y1:K+1)-



3 Alternatives to Re-Processing

So, there exist a number of algorithms that attempt to pro-
cess out-of-sequence measurements efficiently (and at all;
widely advocated approach appears to be to simply ignore
such measurements!). These algorithms can be divided into
two broad groups: (a) those that store the parameters of the
chain and (b) those that do not and so necessitate process-
ing of data that are earlier than the start of the chain. These
two groups will be considered in turn. The emphasis is on
the models used and not on the details of the matrix manfpg. 11: A stochastic dynamic system for
ulations that result under certain assumptions regartieg f, (QTTRK,I T \yl;K)-
models and the algorithms then used.

It is worth noting that, in case of linear Gaussian mod-
els, it is true to say that as the time of an out-of-sequence
measurement becomes increasingly far into the past, the
effect on the filtered distribution reduces. However, with
non-linear models, this does not necessarily follow; an out
of-sequence measurement could, for example, drastically XTFK 1XTk+>§TF¥
change the probabilities of different association events a
so have a large effect even at a long lag.

[
Vi Y, o Y1 Yy

3.1 Within Chain Algorithms

One approach to representing the uncertainty over the chain
is to consider astacked-stateX,,., which consists of the

)
A A

states over a fixed lag,, stacked on top of one another,F 9. 12 A stochastic  dynamic  system for

Ty, 7. Out-of-sequence measurements that fall infb(xmx_lvxrmnxmx’yK+1|ylzK)-
this lag then appear as in-sequence with respect to this
stacked-state[4] so one can use standard tracking algo-
rithms to track this stacked-state. However, this approach
does not exploit the structure of the model and stores a ver-
bose description of the fixed-lag distribution. In the case
considered by [4] of linear Gaussian models, the Kalman
filter is the optimal tracking algorithm in terms of its capac

ity to describe the pdf. However, by storing the full covari-
ance matrix of the stacked-state, more parameters arelstore
than those required to completely describe the fixed-lag dis

tribution. It should be said that [4] does propose some ap- Y. V. Y. ¥ Y

proximation strategies to improve efficiency, but the atgho 1 2 R L1k+1 R

believe that the fact that the fixed-lag distribution is niet e _ _ ) )

ficiently parameterised means that the approach sufferdi§- 13- A stochastic dynamic system for

terms of efficiency. p (%RKH YR 1|k ).

3.1.1 Algorithms A and B

If the out-of-sequence measurement is between the times
corresponding to the last two nodes in the fixed lag distri-
bution, such thatpx _; < 741 < Tpr (SORKH! = RK)

then the only parts of the chain that need to be stored to Xng
obtain p (xTRK ly1. K) are those relating to the final two

nodes. So, one can aUng’W<fCTRK_1»$TRK|y1:K) to

producep (xTRK,NxTKJruxTRK7yK+1|y1:K)u and then Yl Y2 ﬁ(_ 1Y Y
p (ITRK+17yK+1|y1:K) and SOp (‘TTRK+1 ‘ZJl:K+1), which k+1 I*
are respectively shown in figures 11, 12, 13 and 14.
This is what algorithm A implements[2]. Algorithm
A assumes linear Gaussian models and R&t— 1 = P (@r e [Y1:241).

RX-1soonecan parameterigse{zmh1 L7 \:th:K) us-

Fig. 14: A stochastic dynamic system for

ing the last two filtered distributiong; (xTRK ly1.rc) and
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Fig. 15: A stochastic dynamic system forFig. 17: A stochastic dynamic system for
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Fig. 16: A stochastic dynamic system fOIFig. 18: A stochastic dynamic system for

X Y1: .
p (xTkaLiTRK7xTK+17yK+1|y1!K . p( TREF ‘ULKH)

/
, < .
P (¢r,_, [y1:-1), and some other quantities calculated (zTRK v lyer s ) forall L < L. One could then pro
during the filtering process (that account for the conditionCeSS the out-of-sequence measurement using the chain as

dependency structure). If the assumptions hold, a|gor|trpﬁrameterlsed using the stored filtered distributions.

A is exact in its capacity to deduq@(erK+1 1K1 ) Motivated by the need to reduce storage, one can sum-
; marise the effect of the measuremenigzx_p,1.grx,
romp(xfgkflvxmﬂym) on z, . with a single equivalent likelihood functién

However, if R¥ — 1 # Rf™!, so the last two 5 (y |xT « ), which is not technically a pdf since it is pa-
filtered distributions don't refer to the last two tlmeSrametensed bWT - The use of this summary approx|_
the algorithm will be approximate; the stored filtereghates the fixed lag distribution (shown in figure 15) in such
distributions will then not be able to exactly describg way that the approaches described in section 3.1.1 can
P (foKmxTRK |y1;K). This situation can arise if two be used to process the out-of-sequence measurement. This

out-of-sequence measurements are received one after&Rgroximation is illustrated in figure 19.

other such thaR¥+2 = RK, The resulting algorithm has been shown to perform well
Algorithm B[2] then introduces an approximation that reand is known as Algorithm Al[1]. Were the equivalent
sults in a minor reduction in Computationa| cost. measurement to parameterise a different likelihood func-
tion, namelyp (y*|x7RK_L+l,xTRK , the approach could

3.1.2 Algorithms Al and BI be made exact though the same reduction in storage would

In the general case, the out-of-sequence measurement isth@d be difficult to achieve. However, since the dependency
tween the times corresponding to two nodes in the fixed lag;

distribution. So, this fixed lag distribution then needs éo b, d?;gﬁ:g??g“? the.iﬁrmfi&céggvyvﬁn:tj.:ﬁ::20%%‘53“' y
stored for some lagl. Here we assume thagx_; < pdtp erised hywith = 0 0

confusm ly often also denot is parameterised hywith
Tk+1 < Trr_r41; the lag is just long enough to accom gy gdylz).isp by

modate the out-of-sequence measurement. If this d|sfyr|-
bution is stored, one can awgmqn(gcTRK7L;TRK |y1:K)

RK—L:TRK’

to prOducep (1'7' Trgis yK+1|y1;K), and then

P (Trppn» Y 1ly1:x) @and sop (27, ., [y1:x+1), which
are respectively shown in figures 15, 16, 17 and 18.

In a similar manner to previously, X — I/ = RK-L
for L' < L, so the last filtered distributions refer to the Yl Y2 Y YFK
last L times, thenp (mTRK L TRK|y1:K) can be parame-
terised using stored filtered distributions and other quahig. 19: A stochastic dynamic system for an approximation
tities calculated when conducting the filtering. So, it i#®p ($TK+1,$K+1|y1:K+1)-
then possible to deduge(z; ., [y1:x11) from the stored




structure between the measurements and the state sequéred-interval posterior isn’t well approximated. However
is lost, algorithm Al is approximate. Algorithm Bl employsthe filtered distribution is well approximated. The resalt i
a further approximation to facilitate a minor reduction ithat the degeneracy that would result is moved to the other
computation[1]. end of the trajectory (at times far from the filtered time).
By way of an aside and as observed in [4], it shoul8o, the resampling operation can be thought of as moving
be noted that this use of an equivalent measurement is this degeneracy problem down the markov chain. The parti-
same idea as is used in the context of track fusion to tramtes therefore explore a fixed-lag posterior distributiod a
mit measurement summaries in place of either tracks ame can think of a particle filter that uses resampling as an
measurements. Rather than transmit all the measuremdmplicit) fixed-lag smoother.
from sensor nodes to a central tracker, individual nodesSo, a problem comes about if, as is the case when con-
track the measurements they receive and transmit likelihosidering out-of-sequence measurements, the fidelity of the
functions, which can be thought of as the parameters ohpproximation to the fixed-lag distribution is of interest.
single measurement that would have resulted in the saBe, it becomes of increased importance that the proposal
change to the track as the measurements that were adistribution is well matched to the fixed-lag posterior. Al-
ally received. The track fusion node can then treat thenatively, mechanisms for using a sub-optimal proposal
likelihood functions as independent measurements and chstribution can be used. Such mechanisms include the use

therefore employ a tracker to conduct track fusion. of rejunivating Metropolis-Hastings steps and less rigsro
variants known as jitter and regularisation. However, sinc
3.1.3 Efficient and Exact Algorithms the distribution of the chain has a large amount of correla-

The problem that has been hinted at in this discussion is tﬂgplzt:zfrtuge’ surzh \r/novers] ?r:e r\:\;ahcelssar:llyi/nsThall IS ‘:"Zr?]' ??
for these efficient algorithms to be exact, the fixed lag distO! hich 0 u|g|eb 8 ZS 0 d tk? c;]e ¢ ? N ?tﬁa ame Ie s
bution must be completely described. When this is not tl%w Ich cou'd be deduced through analysis of the correta-

case, an efficient optimal update with out-of-sequence mé‘&.” gtructure of the_ particle clou_d, though th'? would ne-
I%s_snate recalculation of the weights for the fixed-lag and

surements is not possible using these approaches; rep? ¢ ¢ ) £ th s Th
cessing of the data appears to be the only efficient and _Some form Ot reprocessing of the measurements. €
ottom line is that, when using a particle filter to process

timal option available if one restricts oneself to algarith t-of nce m rements. incr. d care is needed in
that represent the uncertainty using Gaussian distribsitio out-o-sequence measurements, increased care Is heede
m_e choice of proposal distribution.

An alternative method has been developed using pa
cle filters[3]. Particle filters represent the uncertaintgro . .
the histor[y ]of states using thepdiversity of a numbgrt%f h)%'z Going Past the Start of the Chain
pothesised trajectories through the state space over tiibe discussion to this point has focused on the processing
Each hypothesised trajectory has an associated weight.ofout-of-sequence measurements that arrive within a fixed-
the context of tracking in the absence of out-of-sequentzsg of the most recent time. There are situations when one
measurements, the hypothesis of the current state is the sviShes to update the filtered distribution as a result of a
ficient statistic of the history and so this is often the gitgint measurement that lies outside this lag. Before discussing
stored by the particle filter. However, the path of the partihe algorithms that result, it is necessary to have a brgef di
cle through the state space can also be stored; this is not¢hesion of reverse-time dynamics.
same as the sequence of filtered distributions. The weights
on the particles refer to the relative probabilities of tlife d 3.2.1 Reverse-Time Dynamics

ferent hypothesised paths. For each such path, the stategt gynamics are often specified in terms of a dynamic
the times of the processed measurements are fixed. SOyigye| for the forward-time dynamics, that is a function of

process an out-of-sequence measurement, there is N0 fA&4srm of (1). This function defines a probability distribu
to reprocess all the subsequent data. The trajectory throyg p(z|z.), over the possible values far.. given the
the state space is augmented with a sample of the state atthgq ofz... ’

time of the out-of-sequence measurement (which can be g s possible to rearrange (1) and so derive an equation

sample f_rom a proposa! based on th(_a state at both ne%}—% in terms ofz..:

bouring times in the chain) and the weight on the trajectory

adjusted. = [ (2, 60 y) (5)
However, there is a problem. The particle weights repre-

sent the d|5par|ty between the posterior and the proposairhree issues warrant discussion. FirSt, in the general

distribution used to Samp|e the trajectory_ This dispa@.ase, this inverse function doesn’t exist or isn't Unique. A

ity necessarily accumulates over time and causes degarfPecific example of when this happens, consider the case

eracy. This degeneracy is avoided by using a resampli§en (1) is of the following form:

step, whereby particles are probabilistically replicaaed

discarded. If you didn't resample, you'd get degeneracy

since, as time evolves, the proposal distribution ess@ntiayherec,., . is drawn from a zero-mean Gaussian distribu-

becomes a worse and worse approximation to the fixgghn. Then (5) becomes:

interval posterior distribution. When you resample, you

make copies of some of the particles, which means that this z,=F o+, @)

Trr = FxT + €7 (6)



where if the covariance of.._, is @, the covariance of

yhere It the covanet , . X, X

€ _-iISFTQF~ " . If F doesn't have an inverse, then k+1 K

problems will arise. In this specific case, it is possible

to avoid the need to calculaté—! and use a parameter-

isation (using Information Matrices) of the Kalman filter . .
Y1 Y5

when considering reverse time dynamics (such that only
' = Fis needed). However, in the general nonlin-
ear case this isn’t possible.

A second issue is that this process of invertfiig) does
not generally result in a probability distribution at aliiet
process essentially calculatg$z,|z,) as a function of
x,. This is not guaranteed to integrate to unity ower
since the determinant of the transformation could differ

Yk+1 YFk
Fig. 20: A stochastic dynamic system for Algorithm C’s
approximation tg (xTRK+1 TR 41|Y1K 1)

Tk

from unity and is potentially state dependent. One needs to
recall the standard result regarding transformations of ra
dom samples from a distribution ferto a distribution for f
x=h71(2):

p(z=h(a)) |42 ff &

pla=h7"(2) = , ® _ _ . .
[p(z=h(a)) ’di;(ag )| de! Fig. 21: A stochastic dynamic system for

p (lelTK ,A1:K yl:K)-

The implication is that care is needed and that if one simply

inverts the functional form of the dynamics, the result is no

necessarily a (reverse-time) distribution. Evidently, one can devise improved approximation
Furthermore, a third issue is that this distribution, eveschemes by considering the issues raised in the previous

once calculated isn't them(z .|z, )! In fact, by Bayes rule: section. A compromise is needed between having a par-

simonious representation (so with small storage require-

_ p(@rzr)p(2r) g) Ments) and resulting performance in scenarios of interest.
p (.’E—,— ‘.’E—,—/) - ( ) .
p(x.7) These schemes are not discussed here.
wherep () andp (x,) are the prior on:. andz,. respec- o
tively resulting from the initial priorp (x): 4 Data Association
() = (o) p (02| 0) dz (10) The reason for the completeness of the previous discussion
PiTr) = | PiT0) P Zr]|T0) G%0 is to illustrate that all the previous approaches to process

The use of these priors then ensures that the (forwatiag out?f)f-seqqgncedmeasuremlents (andfsome othe;s) can
and backwards) dynamics are consistent with the initi i eka;,ly cdon5| erel_ as S%eﬁ:f"‘ ca?e; of_a geinerlc Lame-
prior; using the forward-dynamics from the initial priordan work based on explicit modelling ot the fixed-lag proba-

then using the backwards-dynamics to go back to the tirﬂgity distributions. This section will now show that it is
of the initial prior should leave the initial prior: straightforward to describe the data association in theesam

context and so solve out-of-sequence data association prob

lems.

z0) = , Clzor) dxg )dx, o .

p (o) / (,/p(xo )P (@r|zor) dzo ) p (zoler) d The association problem can be modelled using another
(11) set of nodes in the graphical model. At thé&h iteration,

an association variable, governs the association of the
= /P (zr) p (wo|zr) dzr = p(20) (12) measurements with the target. The graphical model associ-
ated with this interpretation of the data association bl
3.3 Algorithm C is shown in figure 24

If one chooses the reverse-time dynamics to be determinisObservation of a node, ie. knowledge of the measure-
tic and so have no associated uncertditingn these issuesments, then results in the graphical model shown in fig-
disappear. This special choice of reverse-time model aldt 22.

means that the fixed-lag distribution does not need to pbeThe fact that the measurements are observed means that
considered and one can simply store the filtered distribie distributions foi,.x andz-,.,, are coupled. So, one
tion, augment the chain and then update the filtered dis@PProach to solving the data association problem is to sam-
bution. This is one interpretation of Algorithm C[1] and théle both the state and the association sequence. Another,

model for processing of an out-of-sequence measuremerWfych exploits the structure of the problem, is to sample
shown in figure 20. one chain and then consider the other chain conditional on

In all such cases each sample has associated

: . o . his sample.
3In the case of linear Gaussian models, this is equivalent tto P
approximatingQ = 0 when calculating the parameters of the “Note that we use circles to represent nodes corresponding to
reverse-time dynamics. both continuous and discrete variables.



X Because of the observation that, by being explicit about
Tk the representation of the uncertainty, the data assogiatio
problem can be orthogonalised from that of processing out-

of-sequence data, there is no requirement regarding tlee tim

k associated with the association events. So, if, as is the cas

for the work that motivated this review and extension of the

a; ap ay literature, one is considering radars that rotate at differ
rates and report at the end of their scans, oneas&each

Fig. 22 A stochastic dynamic system fokarget to produce the distribution over the candidate asso-
P (@rircs Atk |Y1:k)- ciation events even if these events are stored in a different
order internally for one target than for another (or poten-

L . . . tially even for one sample for the same target to another
with it a weight and a conditional distribution on the Otheéuch sample).

part of the problem. In the case of a multiple hypothe-
sis tracker, the filter samples (té most probabley,.x 6 Conclusions

and then calculates the statisticspdfrr [a1.x, y1:) O The wide range of algorithms that exist for processing out-
each sampled;. . In the case of a particle filter, it is pos-o¢ sequence measurements have been shown to be specific
sible to samplez-,.., and then calculate the statistics 01:';\pproximations to a generic framework that is described us-
P (a1 k|7 mic Yr1:x¢c) for each sampled.,.,.. Note that, g graphical models. It has shown to be straightforward to

because of the structure of the model, the only flow of dgs;en this framework to cater for out-of-sequence data as-
pendence from one time step to the next is through the stg,

. Iiation with multiple targets.
sequenceg ., ... Hence,p(a1.x|zr 7w, y1.x) factorises
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