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Abstract – In data fusion systems, one often encounters mea-
surements of past target locations and then wishes to deduce
where the targets are currently located. Recent research on the
processing of suchout-of-sequencedata has culminated in the
development of a number of algorithms for solving the associ-
ated tracking problem. This paper reviews these different ap-
proaches in a common Bayesian framework and proposes an ar-
chitecture that orthogonalises the data association and out-of-
sequence problems such that any combination of solutions to these
two problems can be used together. The emphasis is not on advo-
cating one approach over another on the basis of computational
expense, but rather on understanding the relationships between
the algorithms so that any approximations made are explicit.
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1 Introduction

There are a number of data fusion scenarios which result in
a multi-target tracker receiving measurements of where the
targets were previously located. In the general case, this is
due to the identity of the sensor that generates the measure-
ments of a target affecting the length of time for the infor-
mation of where the target was to propagate to the tracker.
This can be caused by a number of specific effects: com-
munications delays from the sensor to the tracker could be
sensor dependent; acoustic propagation could result in dif-
ferent sensors observing the current state of the target at
different times; formation of tracks at a sensor could intro-
duce delay in sending these tracks to the fusion node (often
because the sensor is a rotating radar with measurement-
specific time stamps).

The result is that tracking in the presence of out-of-
sequence measurements has received considerable interest
over recent years and a number of different approaches have
been proposed[1–4]. Here, these approaches are reviewed
in the context of a common Bayesian definition of the prob-
lem that is similar to that described in [3, 4]. The com-
mon definition gives insight into the relative merits of pre-
vious approaches and makes it possible to extend these ap-
proaches to provide efficient solutions to the general multi-
target out-of-sequence data-association problem. These so-
lutions are efficient in that they exploit the structure of the
underlying (Markov-chain) model for the targets. Much of
the research is motivated by the desire to be able to process

out-of-sequence data more efficiently than an algorithm that
simply reprocesses all the data. It should be acknowledged
that several of the algorithms discussed can be criticised as
not achieving this aim. However, the pursuit of a common
understanding and the use of only explicit approximation
motivates this paper.

So, in section 2 a framework is described that is capa-
ble of describing the previous approaches to solving the
problems associated with out-of-sequence measurements.
Section 3 demonstrates that this framework can accommo-
date the wide range of existing algorithms and discusses
these algorithms within this framework. It is shown, in sec-
tions 4 and 5 respectively, to be straightforward to extend
this framework to consider data association and multiple
targets. Finally, conclusions are drawn in section 6.

2 Stochastic Dynamic Systems

To begin, consider a single target. At time,τ , the state of
the target isxτ . There exists an equation, which enables the
future state of the target,xτ ′ , to be described in terms of the
previous state and some random quantity,ǫτ ′

−τ :

xτ ′ = f (xτ , ǫτ ′
−τ ) (1)

At one of a number of iterations,k, a measurement,yk,
is received. This measurement is described in terms of
the state at the corresponding time,xτk

, and some random
quantity,ωk:

yk = h (xτk
, ωk) (2)

Given these equations, one can infer the associated prob-
ability densities, namelyp (xτ ′ |xτ ) andp (yk|xτk

); a minor
point is that equations 1 and 2 may convey more informa-
tion than the probability densities though for all estimation
problems, including all tracking problems, the two descrip-
tions can be considered equivalent1. These densities define
the probability density over the joint distribution of the tra-
jectory of the target and the measurements received up to

1Equations 1 and 2 define the physical causal process rather
than just the resulting dependencies.
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Fig. 1: A stochastic dynamic system forp (xτ1:τK
, y1:K).
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Fig. 2: A stochastic dynamic system forp (xτ1:τK
|y1:K).

some point,K. This density can be factorised as follows:

p (xτ1:τK
, y1:K) =p (xτ1:τK

) p (y1:K |xτ1:τK
) (3)

=p (xτ1
)

K
∏

k=2

p
(

xτk
|xτk−1

)

K
∏

k=1

p (yk|xτk
)

(4)

wherep (xτ1
) is some initial prior,y1:K = {y1, y2, . . . yK}

is the history of (as yet unobserved) measurements and
xτ1:τK

= {xτ1
, xτ2

, . . . , xτK
} is the history of the states

at the times corresponding to these measurements. This
stochastic dynamic systemcan be drawn diagrammatically
as graphical model, a set of interconnected nodes as in fig-
ure 1. The nodes represent quantities of interest and the
arrows indicate dependencies of one variable on another.
The reader unfamiliar with graphical models should refer
to one of the many texts available on the subject[5]. Some
basic understanding of such models will be assumed from
this point.

The graphical model identifies the dependency structure
of the variables. The arrows point from child nodes to par-
ent nodes and convey the dependency structure. This spe-
cific kind of Markov chain structure is such that the current
state is a sufficient statistic of the past; if one knows the cur-
rent state exactly, there is no more information to be gained
by knowing previous states of the system.

Often one observes the true value of a variable and then
one wants to update the distribution over all the other un-
observed variables (which are referred to ashiddenin the
graphical model literature) in the light of this observa-
tion. With the model we are considering, we could imag-
ine that the measurements,y1:K , could all be received at
once and one would then desire the distribution of the other
unobserved variables (the states) given the measurements,
ie.p (xτ1:τK

|y1:K). In the diagrammatic language of graph-
ical models, this is represented using filled nodes as shown
in figure 2.
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Fig. 3: A stochastic dynamic system for
p
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Fig. 4: A stochastic dynamic system forp (xτK
|y1:K).

The dependency structure means thatp (xτ1:τK
|y1:K)

can be expressed very succinctly; one does not need to con-
sider the joint distribution explicitly, but can fully define the
distribution using conditional distributions of parent (state)
nodes on child (state) nodes. This structure is that exploited
by fixed-lag smoothing algorithms such as the Kalman[6]
and particle smoother[7]. Note that such joint distributions
are often highly correlated; uncertainty over the value of a
given state is strongly affected by the values of its neigh-
bours (in time).

When the measurements are received in time order, the
chain can simply be augmented with the new nodes for the
state and the measurement. The fact that the new measure-
ment is then observed could then be used to deduce the pa-
rameters of the chain. The new chain that would result is
shown in figure 3.

Removing an unobserved node from the network is
equivalent to integrating out the corresponding variable
from the joint distribution. When this is conducted, the
children of the node become new children of the parents
of the node; the parent node gets its old grandchildren as its
new children! In tracking, one is only interested in the fil-
tered distribution,p (xτK

|y1:K). So, one can integrate out
the nodes corresponding to each of the other states of the
target in turn. The resulting chain is shown in figure 4.

One can then augment this chain to
form p

(

xτK
, xτK+1

, yK+1|y1:K

)

and then
p

(

xτK
, xτK+1

|y1:K+1

)

and p
(

xτK+1
|y1:K+1

)

, which
are shown in figures 5, 6 and 7 respectively.

This process is no more than that conducted by a Kalman
filter or particle filter, which both storep (xτK

|y1:K) as a
sufficient statistic ofp (xτ1:τK

|y1:K) in terms of the capac-
ity to calculatep

(

xτK+1
|y1:K+1

)

.

2.1 Out-of-Sequence Measurements
The presence of out-of-sequence measurements compli-
cates this process. An out-of-sequence measurement refers



X
kτ

Y1 Y2 Yk

X
k+1τ

Yk+1

Fig. 5: A stochastic dynamic system for
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Fig. 6: A stochastic dynamic system for
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Fig. 8: A stochastic dynamic system forp (xτ1:τK
|y1:K).
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Fig. 9: A stochastic dynamic system for
p
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)
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to a state at a point in the past; if the(K+1)th measurement
is the first out-of-sequence measurement to be received then
τK+1 < τK . In the more general case, the quantity of inter-
est is often thenp

(

xτ
RK+1

|y1:K+1

)

, whereτRK+1 ≥ τK′

for all K ′ ≤ K +1 soτRK+1 is the time of the mostRecent
in time measurement. Essentially, one wants to revise the
belief about where the target is given a measurement of
where it was.

In this environment, p
(

xτ
RK
|y1:K

)

is not a suffi-
cient statistic ofp (xτ1:τK

|y1:K) in terms of the capac-
ity to calculatep

(

xτ
RK+1

|y1:K+1

)

. However, it is still
possible to augment the chain (shown in terms ofRK

in figure 8) to form p
(

xτ1:τK+1
, yK+1|y1:K

)

and then
p

(

xτ1:τK+1
|y1:K+1

)

, which are shown in figures 9 and 10
respectively.

So, this means that on receipt of an out-of-sequence
measurement, there is a need to update the parameters of
the chain. A naive implementation of an out-of-sequence
measurement processing algorithm then necessitates re-
processing of the data from the time of the out-of-sequence
measurement to the last time. Research has focused on
investigating the potential for more efficient alternative
schemes.
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Fig. 10: A stochastic dynamic system for
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3 Alternatives to Re-Processing

So, there exist a number of algorithms that attempt to pro-
cess out-of-sequence measurements efficiently (and at all;a
widely advocated approach appears to be to simply ignore
such measurements!). These algorithms can be divided into
two broad groups: (a) those that store the parameters of the
chain and (b) those that do not and so necessitate process-
ing of data that are earlier than the start of the chain. These
two groups will be considered in turn. The emphasis is on
the models used and not on the details of the matrix manip-
ulations that result under certain assumptions regarding the
models and the algorithms then used.

It is worth noting that, in case of linear Gaussian mod-
els, it is true to say that as the time of an out-of-sequence
measurement becomes increasingly far into the past, the
effect on the filtered distribution reduces. However, with
non-linear models, this does not necessarily follow; an out-
of-sequence measurement could, for example, drastically
change the probabilities of different association events and
so have a large effect even at a long lag.

3.1 Within Chain Algorithms

One approach to representing the uncertainty over the chain
is to consider astacked-state, XτK

, which consists of the
states over a fixed lag,L, stacked on top of one another,
xτ

Rk
−L

:τ
Rk

. Out-of-sequence measurements that fall into
this lag then appear as in-sequence with respect to this
stacked-state[4] so one can use standard tracking algo-
rithms to track this stacked-state. However, this approach
does not exploit the structure of the model and stores a ver-
bose description of the fixed-lag distribution. In the case
considered by [4] of linear Gaussian models, the Kalman
filter is the optimal tracking algorithm in terms of its capac-
ity to describe the pdf. However, by storing the full covari-
ance matrix of the stacked-state, more parameters are stored
than those required to completely describe the fixed-lag dis-
tribution. It should be said that [4] does propose some ap-
proximation strategies to improve efficiency, but the authors
believe that the fact that the fixed-lag distribution is not ef-
ficiently parameterised means that the approach suffers in
terms of efficiency.

3.1.1 Algorithms A and B

If the out-of-sequence measurement is between the times
corresponding to the last two nodes in the fixed lag distri-
bution, such thatτRK

−1 ≤ τK+1 ≤ τRK (soRK+1 = RK)
then the only parts of the chain that need to be stored to
obtain p

(

xτ
RK
|y1:K

)

are those relating to the final two

nodes. So, one can augmentp
(

xτ
RK

−1
, xτ

RK
|y1:K

)

to

producep
(

xτ
RK

−1
, xτK+1

, xτ
RK

, yK+1|y1:K

)

, and then

p
(

xτ
RK+1

, yK+1|y1:K

)

and sop
(

xτ
RK+1

|y1:K+1

)

, which
are respectively shown in figures 11, 12, 13 and 14.

This is what algorithm A implements[2]. Algorithm
A assumes linear Gaussian models and thatRK − 1 =

RK−1 so one can parameterisep
(

xτ
RK

−1
, xτ

RK
|y1:K

)

us-

ing the last two filtered distributions,p
(

xτ
RK
|y1:K

)

and
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Fig. 11: A stochastic dynamic system for

p
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)
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Fig. 12: A stochastic dynamic system for

p
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)
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Fig. 13: A stochastic dynamic system for
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Fig. 14: A stochastic dynamic system for
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Fig. 15: A stochastic dynamic system for
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Fig. 16: A stochastic dynamic system for
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RK
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, yK+1|y1:K

)

.

p
(

xτ
RK−1

|y1:K−1

)

, and some other quantities calculated
during the filtering process (that account for the conditional
dependency structure). If the assumptions hold, algorithm
A is exact in its capacity to deducep

(

xτ
RK+1

|y1:K+1

)

from p
(

xτ
RK

−1
, xτ

RK
|y1:K

)

.

However, if RK − 1 6= RK−1, so the last two
filtered distributions don’t refer to the last two times,
the algorithm will be approximate; the stored filtered
distributions will then not be able to exactly describe

p
(

xτ
RK

−1
, xτ

RK
|y1:K

)

. This situation can arise if two

out-of-sequence measurements are received one after the
other such thatRK+2 = RK .

Algorithm B[2] then introduces an approximation that re-
sults in a minor reduction in computational cost.

3.1.2 Algorithms Al and Bl

In the general case, the out-of-sequence measurement is be-
tween the times corresponding to two nodes in the fixed lag
distribution. So, this fixed lag distribution then needs to be
stored for some lag,L. Here we assume thatτRK

−L <

τK+1 < τRK
−L+1; the lag is just long enough to accom-

modate the out-of-sequence measurement. If this distri-

bution is stored, one can augmentp
(

xτ
RK

−L
:τ

RK
|y1:K

)

to producep
(

xτ
RK

−L
:τ

RK
, xτK+1

, yK+1|y1:K

)

, and then

p
(

xτ
RK+1

, yK+1|y1:K

)

and sop
(

xτ
RK+1

|y1:K+1

)

, which
are respectively shown in figures 15, 16, 17 and 18.

In a similar manner to previously, ifRK − L′ = RK−L
′

for L′ ≤ L, so the lastL filtered distributions refer to the
last L times, thenp

(

xτ
RK

−L
:τ

RK
|y1:K

)

can be parame-

terised using stored filtered distributions and other quan-
tities calculated when conducting the filtering. So, it is
then possible to deducep

(

xτ
RK+1

|y1:K+1

)

from the stored
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Fig. 17: A stochastic dynamic system for
p
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, yK+1|y1:K

)
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Fig. 18: A stochastic dynamic system for
p
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xτ
RK+1

|y1:K+1

)

.

p
(

xτ
RK−L′

|y1:K−L′

)

for all L′ ≤ L. One could then pro-

cess the out-of-sequence measurement using the chain as
parameterised using the stored filtered distributions.

Motivated by the need to reduce storage, one can sum-
marise the effect of the measurements,yRK

−L+1:RK ,
on xτ

RK
with a single equivalent likelihood function2,

p
(

y⋆|xτ
RK

)

, which is not technically a pdf since it is pa-
rameterised byxτ

RK
. The use of this summary approxi-

mates the fixed lag distribution (shown in figure 15) in such
a way that the approaches described in section 3.1.1 can
be used to process the out-of-sequence measurement. This
approximation is illustrated in figure 19.

The resulting algorithm has been shown to perform well
and is known as Algorithm Al[1]. Were the equivalent
measurement to parameterise a different likelihood func-

tion, namelyp
(

y⋆|xτ
RK

−L+1
, xτ

RK

)

, the approach could

be made exact though the same reduction in storage would
then be difficult to achieve. However, since the dependency

2The authors use the terminology that a likelihood,p (y|x), is
a pdf parameterised byy with x fixed, while a likelihood function,
confusingly often also denotedp (y|x), is parameterised byx with
y fixed.
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Fig. 19: A stochastic dynamic system for an approximation
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.



structure between the measurements and the state sequence
is lost, algorithm Al is approximate. Algorithm Bl employs
a further approximation to facilitate a minor reduction in
computation[1].

By way of an aside and as observed in [4], it should
be noted that this use of an equivalent measurement is the
same idea as is used in the context of track fusion to trans-
mit measurement summaries in place of either tracks or
measurements. Rather than transmit all the measurements
from sensor nodes to a central tracker, individual nodes
track the measurements they receive and transmit likelihood
functions, which can be thought of as the parameters of a
single measurement that would have resulted in the same
change to the track as the measurements that were actu-
ally received. The track fusion node can then treat these
likelihood functions as independent measurements and can
therefore employ a tracker to conduct track fusion.

3.1.3 Efficient and Exact Algorithms

The problem that has been hinted at in this discussion is that
for these efficient algorithms to be exact, the fixed lag distri-
bution must be completely described. When this is not the
case, an efficient optimal update with out-of-sequence mea-
surements is not possible using these approaches; repro-
cessing of the data appears to be the only efficient and op-
timal option available if one restricts oneself to algorithms
that represent the uncertainty using Gaussian distributions.

An alternative method has been developed using parti-
cle filters[3]. Particle filters represent the uncertainty over
the history of states using the diversity of a number of hy-
pothesised trajectories through the state space over time.
Each hypothesised trajectory has an associated weight. In
the context of tracking in the absence of out-of-sequence
measurements, the hypothesis of the current state is the suf-
ficient statistic of the history and so this is often the quantity
stored by the particle filter. However, the path of the parti-
cle through the state space can also be stored; this is not the
same as the sequence of filtered distributions. The weights
on the particles refer to the relative probabilities of the dif-
ferent hypothesised paths. For each such path, the states at
the times of the processed measurements are fixed. So, to
process an out-of-sequence measurement, there is no need
to reprocess all the subsequent data. The trajectory through
the state space is augmented with a sample of the state at the
time of the out-of-sequence measurement (which can be a
sample from a proposal based on the state at both neigh-
bouring times in the chain) and the weight on the trajectory
adjusted.

However, there is a problem. The particle weights repre-
sent the disparity between the posterior and the proposal
distribution used to sample the trajectory. This dispar-
ity necessarily accumulates over time and causes degen-
eracy. This degeneracy is avoided by using a resampling
step, whereby particles are probabilistically replicatedand
discarded. If you didn’t resample, you’d get degeneracy
since, as time evolves, the proposal distribution essentially
becomes a worse and worse approximation to the fixed-
interval posterior distribution. When you resample, you
make copies of some of the particles, which means that this

fixed-interval posterior isn’t well approximated. However,
the filtered distribution is well approximated. The result is
that the degeneracy that would result is moved to the other
end of the trajectory (at times far from the filtered time).
So, the resampling operation can be thought of as moving
this degeneracy problem down the markov chain. The parti-
cles therefore explore a fixed-lag posterior distribution and
one can think of a particle filter that uses resampling as an
(implicit) fixed-lag smoother.

So, a problem comes about if, as is the case when con-
sidering out-of-sequence measurements, the fidelity of the
approximation to the fixed-lag distribution is of interest.
So, it becomes of increased importance that the proposal
distribution is well matched to the fixed-lag posterior. Al-
ternatively, mechanisms for using a sub-optimal proposal
distribution can be used. Such mechanisms include the use
of rejunivating Metropolis-Hastings steps and less rigorous
variants known as jitter and regularisation. However, since
the distribution of the chain has a large amount of correla-
tion structure, such moves are necessarily small is size. One
could introduce moves on the whole chain, the parameters
of which could be deduced through analysis of the correla-
tion structure of the particle cloud, though this would ne-
cessitate recalculation of the weights for the fixed-lag and
so some form of reprocessing of the measurements. The
bottom line is that, when using a particle filter to process
out-of-sequence measurements, increased care is needed in
the choice of proposal distribution.

3.2 Going Past the Start of the Chain

The discussion to this point has focused on the processing
of out-of-sequence measurements that arrive within a fixed-
lag of the most recent time. There are situations when one
wishes to update the filtered distribution as a result of a
measurement that lies outside this lag. Before discussing
the algorithms that result, it is necessary to have a brief dis-
cussion of reverse-time dynamics.

3.2.1 Reverse-Time Dynamics

The dynamics are often specified in terms of a dynamic
model for the forward-time dynamics, that is a function of
the form of (1). This function defines a probability distribu-
tion, p (xτ ′ |xτ ), over the possible values forxτ ′ given the
value ofxτ .

It is possible to rearrange (1) and so derive an equation
for xτ in terms ofxτ ′ :

xτ = f−1 (xτ ′ , ǫτ ′
−τ ) (5)

Three issues warrant discussion. First, in the general
case, this inverse function doesn’t exist or isn’t unique. As
a specific example of when this happens, consider the case
when (1) is of the following form:

xτ ′ = Fxτ + ǫτ ′
−τ (6)

whereǫτ ′
−τ is drawn from a zero-mean Gaussian distribu-

tion. Then (5) becomes:

xτ = F−1xτ ′ +←−ǫ τ ′
−τ (7)



where if the covariance ofǫτ ′
−τ is Q, the covariance of

←−ǫ τ ′
−τ is F−1QF−1T

. If F doesn’t have an inverse, then
problems will arise. In this specific case, it is possible
to avoid the need to calculateF−1 and use a parameter-
isation (using Information Matrices) of the Kalman filter
when considering reverse time dynamics (such that only
F−1−1

= F is needed). However, in the general nonlin-
ear case this isn’t possible.

A second issue is that this process of invertingf(.) does
not generally result in a probability distribution at all; the
process essentially calculatesp (xτ ′ |xτ ) as a function of
xτ . This is not guaranteed to integrate to unity overxτ

since the determinant of the transformation could differ
from unity and is potentially state dependent. One needs to
recall the standard result regarding transformations of ran-
dom samples from a distribution forz to a distribution for
x = h−1 (z):

p
(

x = h−1 (z)
)

=
p (z = h (x))

∣

∣

∣

dh(x)
dx

∣

∣

∣

∫

p (z = h (x′))
∣

∣

∣

dh(x′)
dx′

∣

∣

∣
dx′

(8)

The implication is that care is needed and that if one simply
inverts the functional form of the dynamics, the result is not
necessarily a (reverse-time) distribution.

Furthermore, a third issue is that this distribution, even
once calculated isn’t thenp (xτ |xτ ′)! In fact, by Bayes rule:

p (xτ |xτ ′) =
p (xτ ′ |xτ ) p (xτ )

p (xτ ′)
(9)

wherep (xτ ) andp (xτ ′) are the prior onxτ andxτ ′ respec-
tively resulting from the initial prior,p (x0):

p (xτ ) =

∫

p (x0) p (xτ |x0) dx0 (10)

The use of these priors then ensures that the (forwards
and backwards) dynamics are consistent with the initial
prior; using the forward-dynamics from the initial prior and
then using the backwards-dynamics to go back to the time
of the initial prior should leave the initial prior:

p (x0) =

∫
(

∫

p (x0′) p (xτ |x0′) dx0′

)

p (x0|xτ ) dxτ

(11)

=

∫

p (xτ ) p (x0|xτ ) dxτ = p (x0) (12)

3.3 Algorithm C
If one chooses the reverse-time dynamics to be determinis-
tic and so have no associated uncertainty3 then these issues
disappear. This special choice of reverse-time model also
means that the fixed-lag distribution does not need to be
considered and one can simply store the filtered distribu-
tion, augment the chain and then update the filtered distri-
bution. This is one interpretation of Algorithm C[1] and the
model for processing of an out-of-sequence measurement is
shown in figure 20.

3In the case of linear Gaussian models, this is equivalent to
approximatingQ = 0 when calculating the parameters of the
reverse-time dynamics.
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Fig. 20: A stochastic dynamic system for Algorithm C’s
approximation top
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Fig. 21: A stochastic dynamic system for
p (xτ1:τK

, a1:K , y1:K).

Evidently, one can devise improved approximation
schemes by considering the issues raised in the previous
section. A compromise is needed between having a par-
simonious representation (so with small storage require-
ments) and resulting performance in scenarios of interest.
These schemes are not discussed here.

4 Data Association

The reason for the completeness of the previous discussion
is to illustrate that all the previous approaches to process-
ing out-of-sequence measurements (and some others) can
be easily considered as special cases of a generic frame-
work based on explicit modelling of the fixed-lag proba-
bility distributions. This section will now show that it is
straightforward to describe the data association in the same
context and so solve out-of-sequence data association prob-
lems.

The association problem can be modelled using another
set of nodes in the graphical model. At theKth iteration,
an association variable,aK , governs the association of the
measurements with the target. The graphical model associ-
ated with this interpretation of the data association problem
is shown in figure 214.

Observation of a node, ie. knowledge of the measure-
ments, then results in the graphical model shown in fig-
ure 22.

The fact that the measurements are observed means that
the distributions fora1:K andxτ1:τK

are coupled. So, one
approach to solving the data association problem is to sam-
ple both the state and the association sequence. Another,
which exploits the structure of the problem, is to sample
one chain and then consider the other chain conditional on
this sample. In all such cases each sample has associated

4Note that we use circles to represent nodes corresponding to
both continuous and discrete variables.
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Fig. 22: A stochastic dynamic system for
p (xτ1:τK

, a1:K |y1:K).

with it a weight and a conditional distribution on the other
part of the problem. In the case of a multiple hypothe-
sis tracker, the filter samples (theN most probable)a1:K

and then calculates the statistics ofp (xτK
|a1:K , y1:K) for

each sampleda1:K . In the case of a particle filter, it is pos-
sible to samplexτ1:τK

and then calculate the statistics of
p (a1:K |xτ1:τK

, y1:K) for each sampledxτ1:τK
. Note that,

because of the structure of the model, the only flow of de-
pendence from one time step to the next is through the state
sequence,xτ1:τK

. Hence,p (a1:K |xτ1:τK
, y1:K) factorises

through time:

p (a1:K |xτ1:τK
, y1:K) =

K
∏

k=1

p (ak|xτ1:τK
, y1:K) (13)

One can integrate out a node in the association sequence
and so reduce the number of samples in the representation
of p (xτ1:τK

, a1:K |y1:K). This is the approach taken by the
Probabilistic Data Association Filter[8]. Here the interpre-
tation as mixture reduction is made entirely explicit.

So, if one is explicit about sampling the associations
or the state and then modelling the resulting effect on the
other half of the chain, then the data association and out-of-
sequence measurement problems can be orthogonalised in
some sense. Just as some structures for modelling out-of-
sequence data necessitate what amounts to reprocessing of
the data, so one needs to perform the same reprocessing to
recalculate the weights on the samples. One could equally
explicitly approximate to avoid this reprocessing.

Again, if one uses a particle filter to sample the state se-
quence, the need to reprocess can be avoided so long as the
proposal distribution is chosen judiciously. However, in the
presence of uncertain data association, it is difficult to de-
vise such intelligent proposal distributions.

5 Multiple Targets

The various methods for conducting multiple target data as-
sociation can be posed as special cases of a generic solution
strategy based on: calculating a discrete distribution over
the candidate values for the association variable for each
target; processing these distributions in some way to find
the impact of thebestor theaverageassociation event for
the targets jointly; calculating the effect of some revised
discrete distributions on the individual targets[9]. Eachtar-
get therefore needs to be able to calculate the weights on
each of the candidate association events over which the
multi-target constraints are to be imposed.

Because of the observation that, by being explicit about
the representation of the uncertainty, the data association
problem can be orthogonalised from that of processing out-
of-sequence data, there is no requirement regarding the time
associated with the association events. So, if, as is the case
for the work that motivated this review and extension of the
literature, one is considering radars that rotate at different
rates and report at the end of their scans, one canaskeach
target to produce the distribution over the candidate asso-
ciation events even if these events are stored in a different
order internally for one target than for another (or poten-
tially even for one sample for the same target to another
such sample).

6 Conclusions
The wide range of algorithms that exist for processing out-
of-sequence measurements have been shown to be specific
approximations to a generic framework that is described us-
ing graphical models. It has shown to be straightforward to
extend this framework to cater for out-of-sequence data as-
sociation with multiple targets.
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