159 research outputs found

    Keeping cool in the heat: behavioral thermoregulation and body temperature patterns in wild vervet monkeys

    Get PDF
    Objectives: Climate change is having a significant impact on biodiversity and increasing attention is therefore being devoted to identifying the behavioral strategies that a species uses to cope with climatic stress. We explore how wild vervet monkeys (Chlorocebus pygerythrus) respond to heat stress, and how behavioral adaptations are used to regulate body temperature. Materials and methods: We implanted wild vervet monkeys with temperature-sensitive data loggers and related the body temperature rhythms of these animals to their use of thermoregulatory behaviors. Results: Environmental temperature had a positive effect on the mean, minima and maxima of daily body temperatures. Environmental temperature had a positive effect on the amount of time that vervet monkeys spent in the shade, and animals that spent more time in the shade had lower body temperature maxima. Drinking water did not have a proximate effect on body temperature, most likely a consequence of their regular access to drinking water. Body temperatures were observed to decrease after swimming events, but tended to return to pre-swim temperatures within 1 hr, suggesting a limited thermal benefit of this behavior. Conclusions: Our data support the view that vervet monkeys cope well in the heat, and use behavior as a means to aid thermoregulation. The ability of primates to be flexible in their use of thermoregulatory behaviors can contribute positively to their capacity to cope with environmental variability. However, given its broad effect on plant productivity and habitat loss, climate change is a major threat to species' biogeographical distribution and survival

    Critical solutions in topologically gauged N=8 CFTs in three dimensions

    Get PDF
    In this paper we discuss some special (critical) background solutions that arise in topological gauged N=8{\mathcal N}=8 three-dimensional CFTs with SO(N) gauge group. These solutions solve the TMG equations (containing the parameters μ\mu and ll) for a certain set of values of μl\mu l obtained by varying the number of scalar fields with a VEV. Apart from Minkowski, chiral round AdS3AdS_3 and null-warped AdS3AdS_3 (or Schr\"odinger(z=2)) we identify also a more exotic solution recently found in TMGTMG by Ertl, Grumiller and Johansson. We also discuss the spectrum, symmetry breaking pattern and the supermultiplet structure in the various backgrounds and argue that some properties are due to their common origin in a conformal phase. Some of the scalar fields, including all higgsed ones, turn out to satisfy three-dimensional singleton field equations. Finally, we note that topologically gauged N=6{\mathcal N}=6 ABJ(M) theories have a similar, but more restricted, set of background solutions.Comment: 34 pages, v2: minor corrections, note about a new solution added in final section, v3: two footnotes adde

    The malaria testing and treatment landscape in mainland Tanzania, 2016

    Get PDF
    Abstract Background Understanding the key characteristics of malaria testing and treatment is essential to the control of a disease that continues to pose a major risk of morbidity and mortality in mainland Tanzania, with evidence of a resurgence of the disease in recent years. The introduction of artemisinin combination therapy (ACT) as the first-line treatment for malaria, alongside policies to promote rational case management following testing, highlights the need for evidence of anti-malarial and testing markets in the country. The results of the most recent mainland Tanzania ACTwatch outlet survey are presented here, including data on the availability, market share and price of anti-malarials and malaria diagnosis in 2016. Methods A nationally-representative malaria outlet survey was conducted between 18th May and 2nd July, 2016. A census of public and private outlets with potential to distribute malaria testing and/or treatment was conducted among a representative sample of administrative units. An audit was completed for all anti-malarials, malaria rapid (RDT) diagnostic tests and microscopy. Results A total of 5867 outlets were included in the nationally representative survey, across both public and private sectors. In the public sector, availability of malaria testing was 92.3% and quality-assured (QA) ACT was 89.1% among all screened outlets. Sulfadoxine–pyrimethamine (SP) was stocked by 51.8% of the public sector and injectable artesunate was found in 71.4% of all screened public health facilities. Among anti-malarial private-sector stockists, availability of testing was 15.7, and 65.1% had QA ACT available. The public sector accounted for 83.4% of the total market share for malaria diagnostics. The private sector accounted for 63.9% of the total anti-malarial market, and anti-malarials were most commonly distributed through accredited drug dispensing outlets (ADDOs) (39.0%), duka la dawa baridi (DLDBs) (13.3%) and pharmacies (6.7%). QA ACT comprised 33.1% of the national market share (12.2% public sector and 20.9% private sector). SP accounted for 53.3% of the total market for anti-malarials across both private and public sectors (31.3 and 22.0% of the total market, respectively). The median price per adult equivalent treatment dose (AETD) of QA ACT in the private sector was 1.40,almost1.5timesmoreexpensivethanthemedianpriceperAETDofSP(1.40, almost 1.5 times more expensive than the median price per AETD of SP (1.05). In the private sector, 79.3% of providers perceived ACT to be the most effective treatment for uncomplicated malaria for adults and 88.4% perceived this for children. Conclusions While public sector preparedness for appropriate malaria testing and case management is showing encouraging signs, QA ACT availability and market share in the private sector continues to be sub-optimal for most outlet types. Furthermore, it is concerning that SP continues to predominate in the anti-malarial market. The reasons for this remain unclear, but are likely to be in part related to price, availability and provider knowledge or preferences. Continued efforts to implement government policy around malaria diagnosis and case management should be encouraged

    On the thermodynamic origin of metabolic scaling

    Get PDF
    This work has been funded by projects AYA2013-48623-C2-2, FIS2013-41057-P, CGL2013-46862-C2-1-P and SAF2015-65878-R from the Spanish Ministerio de Economa y Competitividad and PrometeoII/2014/086, PrometeoII/2014/060 and PrometeoII/2014/065 from the Generalitat Valenciana (Spain). BL acknowledges funding from a Salvador de Madariaga fellowship, and L.L. acknowledges funding from EPSRC Early Career fellowship EP/P01660X/1

    Translating microarray data for diagnostic testing in childhood leukaemia

    Get PDF
    BACKGROUND: Recent findings from microarray studies have raised the prospect of a standardized diagnostic gene expression platform to enhance accurate diagnosis and risk stratification in paediatric acute lymphoblastic leukaemia (ALL). However, the robustness as well as the format for such a diagnostic test remains to be determined. As a step towards clinical application of these findings, we have systematically analyzed a published ALL microarray data set using Robust Multi-array Analysis (RMA) and Random Forest (RF). METHODS: We examined published microarray data from 104 ALL patients specimens, that represent six different subgroups defined by cytogenetic features and immunophenotypes. Using the decision-tree based supervised learning algorithm Random Forest (RF), we determined a small set of genes for optimal subgroup distinction and subsequently validated their predictive power in an independent patient cohort. RESULTS: We achieved very high overall ALL subgroup prediction accuracies of about 98%, and were able to verify the robustness of these genes in an independent panel of 68 specimens obtained from a different institution and processed in a different laboratory. Our study established that the selection of discriminating genes is strongly dependent on the analysis method. This may have profound implications for clinical use, particularly when the classifier is reduced to a small set of genes. We have demonstrated that as few as 26 genes yield accurate class prediction and importantly, almost 70% of these genes have not been previously identified as essential for class distinction of the six ALL subgroups. CONCLUSION: Our finding supports the feasibility of qRT-PCR technology for standardized diagnostic testing in paediatric ALL and should, in conjunction with conventional cytogenetics lead to a more accurate classification of the disease. In addition, we have demonstrated that microarray findings from one study can be confirmed in an independent study, using an entirely independent patient cohort and with microarray experiments being performed by a different research team

    Finding the needle in the haystack: why high-throughput screening is good for your health

    Get PDF
    High-throughput screening is an essential component of the toolbox of modern technologies that improve speed and efficiency in contemporary cancer drug development. This is particularly important as we seek to exploit, for maximum therapeutic benefit, the large number of new molecular targets emerging from the Human Genome Project and cancer genomics. Screening of diverse collections of low molecular weight compounds plays a key role in providing chemical starting points for iterative optimisation by medicinal chemistry. Examples of successful drug discovery programmes based on high-throughput screening are described, and these offer potential in the treatment of breast cancer and other malignancies

    Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces

    Get PDF
    Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF) wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR) associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole) and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC) SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements. © 2013 Zhao et al
    • …
    corecore