387 research outputs found

    The Effect of Increasing Donor Age on Myocardial Ischemic Tolerance in a Rodent Model of Donation After Circulatory Death.

    Full text link
    Hearts from older donors or procured via donation after circulatory death (DCD) can alleviate transplant waitlist; however, these hearts are particularly vulnerable to injury caused by warm ischemic times (WITs) inherent to DCD. This study investigates how the combination of increasing donor age and pharmacologic supplementation affects the ischemic tolerance and functional recovery of DCD hearts and how age impacts cardiac mitochondrial respiratory capacity and oxidative phosphorylation.MethodsWistar rats (12-, 18-, and 24-mo-old) were subjected to DCD with 20-min fixed WIT. Hearts were procured, instrumented onto a Langendorff perfusion circuit, flushed with Celsior preservation solution with or without supplementation (glyceryl trinitrate [GTN]/erythropoietin [EPO]/zoniporide [Z]) and perfused (Krebs-Henseleit buffer, 37°C Langendorff 30-min, working 30-min). Cardiac functional recovery of aortic flow (AF), coronary flow (CF), cardiac output (CO), and lactate dehydrogenase release were measured. Native heart tissue (3-, 12-, and 24-mo) were assessed for mitochondrial respiratory capacity.ResultsUnsupplemented 18- and 24-month DCD hearts showed a 6-fold decrease in AF recovery relative to unsupplemented 12-month DCD hearts. GTN/EPO/Z supplementation significantly increased AF and CO recovery of 18-month DCD hearts to levels comparable to supplemented 12-month hearts; however, GTN/EPO/Z did not improve 24-month DCD heart recovery. Compared to 12-month heart tissue, 24-month hearts exhibited significantly impaired mitochondrial oxygen flux at complex I, II, and uncoupled maximal respiration stage.ConclusionsReduced ischemic tolerance after DCD was associated with increasing age. Pharmacologic supplementation improves functional recovery of rat DCD hearts but only up to age 18 months, possibly attributed to a decline in mitochondrial respiratory capacity with increasing age

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    Metabolite profiles of medulloblastoma for rapid and non-invasive detection of molecular disease groups

    Get PDF
    \ua9 2024 The AuthorsBackground: The malignant childhood brain tumour, medulloblastoma, is classified clinically into molecular groups which guide therapy. DNA-methylation profiling is the current classification ‘gold-standard’, typically delivered 3–4 weeks post-surgery. Pre-surgery non-invasive diagnostics thus offer significant potential to improve early diagnosis and clinical management. Here, we determine tumour metabolite profiles of the four medulloblastoma groups, assess their diagnostic utility using tumour tissue and potential for non-invasive diagnosis using in vivo magnetic resonance spectroscopy (MRS). Methods: Metabolite profiles were acquired by high-resolution magic-angle spinning NMR spectroscopy (MAS) from 86 medulloblastomas (from 59 male and 27 female patients), previously classified by DNA-methylation array (WNT (n = 9), SHH (n = 22), Group3 (n = 21), Group4 (n = 34)); RNA-seq data was available for sixty. Unsupervised class-discovery was performed and a support vector machine (SVM) constructed to assess diagnostic performance. The SVM classifier was adapted to use only metabolites (n = 10) routinely quantified from in vivo MRS data, and re-tested. Glutamate was assessed as a predictor of overall survival. Findings: Group-specific metabolite profiles were identified; tumours clustered with good concordance to their reference molecular group (93%). GABA was only detected in WNT, taurine was low in SHH and lipids were high in Group3. The tissue-based metabolite SVM classifier had a cross-validated accuracy of 89% (100% for WNT) and, adapted to use metabolites routinely quantified in vivo, gave a combined classification accuracy of 90% for SHH, Group3 and Group4. Glutamate predicted survival after incorporating known risk-factors (HR = 3.39, 95% CI 1.4–8.1, p = 0.025). Interpretation: Tissue metabolite profiles characterise medulloblastoma molecular groups. Their combination with machine learning can aid rapid diagnosis from tissue and potentially in vivo. Specific metabolites provide important information; GABA identifying WNT and glutamate conferring poor prognosis. Funding: Children with Cancer UK, Cancer Research UK, Children\u27s Cancer North and a Newcastle University PhD studentship

    Differential Effects of Comorbidity on Antihypertensive and Glucose-Regulating Treatment in Diabetes Mellitus – A Cohort Study

    Get PDF
    BACKGROUND: Comorbidity is often mentioned as interfering with "optimal" treatment decisions in diabetes care. It is suggested that diabetes- related comorbidity will increase adequate treatment, whereas diabetes- unrelated comorbidity may decrease this process of care. We hypothesized that these effects differ according to expected priority of the conditions. METHODS: We evaluated the relationship between comorbidity and treatment intensification in a study of 11,248 type 2 diabetes patients using the GIANTT (Groningen Initiative to Analyse type 2 diabetes Treatment) database. We formed a cohort of patients with a systolic blood pressure >/= 140 mmHg (6,820 hypertensive diabetics), and a cohort of patients with an HbA1c >/= 7% (3,589 hyperglycemic diabetics) in 2007. We differentiated comorbidity by diabetes-related or unrelated conditions and by priority. High priority conditions include conditions that are life- interfering, incident or requiring new medication treatment. We performed Cox regression analyses to assess association with treatment intensification, defined as dose increase, start, or addition of drugs. RESULTS: In both the hypertensive and hyperglycemic cohort, only patients with incident diabetes-related comorbidity had a higher chance of treatment intensification (HR 4.48, 2.33-8.62 (p<0.001) for hypertensives; HR 2.37, 1.09-5.17 (p = 0.030) for hyperglycemics). Intensification of hypertension treatment was less likely when a new glucose-regulating drug was prescribed (HR 0.24, 0.06-0.97 (p = 0.046)). None of the prevalent or unrelated comorbidity was significantly associated with treatment intensification. CONCLUSIONS: Diabetes-related comorbidity induced better risk factor treatment only for incident cases, implying that appropriate care is provided more often when complications occur. Diabetes- unrelated comorbidity did not affect hypertension or hyperglycemia management, even when it was incident or life-interfering. Thus, the observed "undertreatment" in diabetes care cannot be explained by constraints caused by such comorbidity

    Electrophysiological Correlates of Strategic Monitoring in Event-Based and Time-Based Prospective Memory

    Get PDF
    Prospective memory (PM) is the ability to remember to accomplish an action when a particular event occurs (i.e., event-based PM), or at a specific time (i.e., time-based PM) while performing an ongoing activity. Strategic Monitoring is one of the basic cognitive functions supporting PM tasks, and involves two mechanisms: a retrieval mode, which consists of maintaining active the intention in memory; and target checking, engaged for verifying the presence of the PM cue in the environment. The present study is aimed at providing the first evidence of event-related potentials (ERPs) associated with time-based PM, and at examining differences and commonalities in the ERPs related to Strategic Monitoring mechanisms between event- and time-based PM tasks

    Dipeptidyl peptidase-1 inhibition in patients hospitalised with COVID-19:a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial

    Get PDF
    This study was funded by an investigator-initiated research grant from Insmed (Bridgewater, NJ, USA). The authors acknowledge the funding and logistical support from the UK National Institute for Health and Care Research.Background: Neutrophil serine proteases are involved in the pathogenesis of COVID-19 and increased serine protease activity has been reported in severe and fatal infection. We investigated whether brensocatib, an inhibitor of dipeptidyl peptidase-1 (DPP-1; an enzyme responsible for the activation of neutrophil serine proteases), would improve outcomes in patients hospitalised with COVID-19. Methods: In a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial, across 14 hospitals in the UK, patients aged 16 years and older who were hospitalised with COVID-19 and had at least one risk factor for severe disease were randomly assigned 1:1, within 96 h of hospital admission, to once-daily brensocatib 25 mg or placebo orally for 28 days. Patients were randomly assigned via a central web-based randomisation system (TruST). Randomisation was stratified by site and age (65 years or ≥65 years), and within each stratum, blocks were of random sizes of two, four, or six patients. Participants in both groups continued to receive other therapies required to manage their condition. Participants, study staff, and investigators were masked to the study assignment. The primary outcome was the 7-point WHO ordinal scale for clinical status at day 29 after random assignment. The intention-to-treat population included all patients who were randomly assigned and met the enrolment criteria. The safety population included all participants who received at least one dose of study medication. This study was registered with the ISRCTN registry, ISRCTN30564012. Findings: Between June 5, 2020, and Jan 25, 2021, 406 patients were randomly assigned to brensocatib or placebo; 192 (47·3%) to the brensocatib group and 214 (52·7%) to the placebo group. Two participants were excluded after being randomly assigned in the brensocatib group (214 patients included in the placebo group and 190 included in the brensocatib group in the intention-to-treat population). Primary outcome data was unavailable for six patients (three in the brensocatib group and three in the placebo group). Patients in the brensocatib group had worse clinical status at day 29 after being randomly assigned than those in the placebo group (adjusted odds ratio 0·72 [95% CI 0·57-0·92]). Prespecified subgroup analyses of the primary outcome supported the primary results. 185 participants reported at least one adverse event; 99 (46%) in the placebo group and 86 (45%) in the brensocatib group. The most common adverse events were gastrointestinal disorders and infections. One death in the placebo group was judged as possibly related to study drug. Interpretation: Brensocatib treatment did not improve clinical status at day 29 in patients hospitalised with COVID-19.Publisher PDFPeer reviewe

    NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    Get PDF
    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases
    • …
    corecore