49 research outputs found
Superconformal Block Quivers, Duality Trees and Diophantine Equations
We generalize previous results on N = 1, (3 + 1)-dimensional superconformal block quiver gauge theories. It is known that the necessary conditions for a theory to be superconformal, i.e. that the beta and gamma functions vanish in addition to anomaly cancellation, translate to a Diophantine equation in terms of the quiver data. We re-derive results for low block numbers revealing an new intriguing algebraic structure underlying a class of possible superconformal fixed points of such theories. After explicitly computing the five block case Diophantine equation, we use this structure to reorganize the result in a form that can be applied to arbitrary block numbers. We argue that these theories can be thought of as vectors in the root system of the corresponding quiver and superconformality conditions are shown to associate them to certain subsets of imaginary roots. These methods also allow for an interpretation of Seiberg duality as the action of the affine Weyl group on the root lattice
Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TGA)
[EN] Ordinary thermogravimetric analysis (TG) and high-resolution TG tests were carried out on three different Portland cement pastes to study the phases present during the first day of hydration. Tests were run at 1, 6, 12 and 24 h of hydration, in order
to determine the phases at these ages. High-resolution TG tests were used to separate decompositions presented in the 100¿200 C interval. The non-evaporable water determined by TG was used to determine hydration degree for the different ages. The effect of particle size distribution (PSD) on mineralogical evolution was established, as well as the addition of calcite as mineralogical filler. Finer PSD and calcite addition accelerate the hydration process, increasing the hydration degree on the first day of eaction between water and cement. According to high-resolution TG results, it was demonstrated that ettringite was the only decomposed phase in the 100¿200 C interval during the first 6 h of hydration for all studied cements. C-S-H phase starts to appear in all cements after 12 h of hydration.Funding was provided by Colciencias (Grant No. Convocatoria 567-2012).Gaviria, X.; Borrachero Rosado, MV.; Paya Bernabeu, JJ.; Monzó Balbuena, JM.; Tobón, J. (2018). Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TGA). Journal of Thermal Analysis and Calorimetry. 132(1):39-46. https://doi.org/10.1007/s10973-017-6905-0S39461321Benboudjema F, Meftah JM, Torernti F. Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng Struct. 2005;27:239–50.Holt E. Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cem Concr Res. 2005;35:464–72.Darquennes A, Staquet S, Delplancke-Ogletree MP, Espion B. Effect of autogenous deformation on the cracking risk of slag cement concretes. Cem Concr Compos. 2011;33:368–79.Slowik V, Schmidt M, Fritzsch R. Capillary pressure in fresh cement-based materials and identification of the air entry value. Cem Concr Compos. 2008;30(7):557–65.Evju C, Hansen S. Expansive properties of ettringite in a mixture of calcium aluminate cement, Portland cement and ß-calcium sulfate hemihydrates. Cem Concr Res. 2001;31:257–61.Bentz DP, Jensen OM, Hansen KK. Olesen, Stang, H. Haecker, C.J. Influence of cement particle-size distribution on early age autogenous strain and stresses in cement-based materials. J Am Ceram Soc. 2001;84(1):129–35.Barcelo L, Moranville M, Clavaud B. Autogenous shrinkage of concrete: a balance between autogenous swelling and self-desiccation. Cem Concr Res. 2005;35(1):177–83.Bouasker M, Mounanga P, Turcry P, Loukili A, Khelidj A. Chemical shrinkage of cement pastes and mortars at very early age: effect of limestone filler and granular inclusions. Cem Concr Compos. 2008;30(1):13–22.Bentz DP. A review of early-age properties of cement-based materials. Cem Concr Res. 2008;38(2):196–204.Ozawa T. Controlled rate thermogravimetry. New usefulness of controlled rate thermogravimetry revealed by decomposition of polyimide. J Therm Anal Calorim. 2000;59:375–84.Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH. Thermal analysis of construction materials. Building materials series. New York: Noyes Publications; 2003.Zanier A. High-resolution TG for the characterization of diesel fuel additives. J Therm Anal Calorim. 2001;64:377–84.Tobón JI, Payá J, Borrachero MV, Restrepo OJ. Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Constr Build Mater. 2012;36:736–42.Singh M, Waghmare S, Kumar V. Characterization of lime plasters used in 16th century Mughal Monument. J Archeol Sci. 2014;42:430–4.Majchrzak-Kuçeba I. Thermogravimetry applied to characterization of fly ash-based MCM-41 mesoporous materials. J Therm Anal Calorim. 2012;107:911–21.Silva ACM, Gálico DA, Guerra RB, Legendre AO, Rinaldo D, Galhiane MS, Bannach G. Study of some volatile compounds evolved from the thermal decomposition of atenolol. J Therm Anal Calorim. 2014;115:2517–20.Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A, Artiaga R. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7.Yamarte L, Paxman D, Begum S, Sarkar P, Chambers A. TG measurement of reactivity of candidate oxygen carrier materials. J Therm Anal Calorim. 2014;116:1301–7.Borrachero MV, Payá J, Bonilla M, Monzó J. The use of thermogravimetric analysis technique for the characterization of construction materials. The gypsum case. J Therm Anal Calorim. 2008;91(2):503–9.Tobón JI, Payá J, Borrachero MV, Soriano L, Restrepo OJ. Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. J Therm Anal Calorim. 2012;107:233–9.Kuzielova E, Žemlička M, Másilko, J, Palou, M.T. Effect of additives on the performance of Dyckerhoff cement, Class G, submitted to simulated hydrothermal curing. J Therm Anal Calorim. Accepted 29 Oct 2017Genc M, Genc ZK. Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. J Therm Anal Calorim. Accepted 24 Oct 2017.Singh M, Kumar SV, Waghmare SA. The composition and technology of the 3–4th century CE decorative earthen plaster of Pithalkhora caves, India. J Archeol Sci. 2016;7:224–37.Liu L, Liu Q, Cao Y, Pan WP. The isothermal studies of char-CO2 gasification using the high-pressure thermo-gravimetric method. J Therm Anal Calorim. 2015;120:1877–82.Majchrzak-Kuce I, Bukalak-Gaik D. Regeneration performance of metal–organic frameworks TG-vacuum tests. J Therm Anal Calorim. 2016;125:1461–6.Ion RM, Radovici C, Fierascu RC, Fierascu I. Thermal and mineralogical investigations of iron archaeological Materials. J Therm Anal Calorim. 2015;121:1247–53.Rupasinghe M, San Nicolas R, Mendis P, Sofi M, Ngo T. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste. Cem Concr Compos. 2017;80:17–30.Esteves PL. On the hydration of water-entrained cement–silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta. 2011;518:27–35.Riesen R. Adjustment of heating rate for maximum resolution in TG and TMA (MaxRes). J Therm Anal. 1998;53:365–74.Lim S, Mondal P. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials. Mater Charact. 2014;92:15–25.Gill PS, Sauerbrunn SR, Crowe BS. High resolution thermogravimetry. J Therm Anal. 1992;38:255–66.Mounanga P, Khelidj A, Loukili A, Baroghel-Bouny V. Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem Concr Res. 2004;34:255–65.Zeng Q, Li K, Fen-chong T, Dangla P. Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Constr Build Mater. 2012;27:560–9.Parrott LP, Geiker M, Gutteridge WA, Killoh D. Monitoring Portland cement hydration: Comparison of methods. Cem Concr Res. 1990;20:919–26.Hewlett PC. Lea’s chemistry of cement and concrete. 4th ed. Oxford: Elsevier Science & Technology Books; 2004.ASTM C305 Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM International, West Conshohocken, PA; 2012.Taylor HF. Cement chemistry. 2nd ed. Westminster: Thomas Telford; 1997.Nadelman EI, Freas DJ, Kurtis KE. Nano- and microstructural characterization of Portland limestone cement paste. In: Nanotechnology in construction. Proceedings of NICOM 5. 2015. p. 87–92
Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells
Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement – a stage between initial cellular internalization and final gene silencing of siRNA delivery systems
Ebola: translational science considerations
We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as “Ebola”, ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus and the disease from global translational science perspective