38 research outputs found

    Effect of controlled and uncontrolled cooling rate on motility parameters of cryopreserved ram spermatozoa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ram spermatozoa are sensitive to extreme changes in temperature during the freeze-thaw process. The degree of damage depends on a combined effect of various factors including freezing temperature. The aim of this study was to determine the effects of two cooling method (controlled-rate and uncontrolled-rate) on pre-freezing and post-thaw sperm motility parameters.</p> <p>Results</p> <p>Ejaculates were collected using the artificial vagina from four Chal rams and three replicates of the ejaculates were diluted with a Tris-based extender and packed in 0.25 ml straws. Then, sample processed according to the two methods. Method 1: straws cooled from 37 to 5°C, at a liner rate of -0.3°C/min in a controlled-rate cooling machine (custom-built) and equilibrated at 5°C for 80 min, then the straws were frozen at rate of -0.3°C/min from 5°C to -10°C and -25°C/min from -10°C to -150°C and plunged into liquid nitrogen for storage. Method 2: straws were transferred to refrigerator and maintained at 5°C for 3 h, then the straws were frozen in liquid nitrogen vapor, 4 cm above the liquid nitrogen for 15 min and plunged into liquid nitrogen. Computer-assisted sperm motility analysis was used to analyze sperm motion characteristics.</p> <p>Conclusions</p> <p>Controlled rate of freezing (Method 1) significantly improve the pre-freezing and post-thaw total and progressive motility compared to uncontrolled rate (Method 2). In specific kinetic parameters, Method 1 gives significantly higher value for VSL and VCL in comparison with Method 2. There are no significant differences between the two methods for VAP and LIN. In conclusion, controlled rate of cooling conferred better cryopreserving ability to ram spermatozoa compared to uncontrolled rate of cooling prior to programmable freezing.</p

    Regulatory Elements within the Prodomain of Falcipain-2, a Cysteine Protease of the Malaria Parasite Plasmodium falciparum

    Get PDF
    Falcipain-2, a papain family cysteine protease of the malaria parasite Plasmodium falciparum, plays a key role in parasite hydrolysis of hemoglobin and is a potential chemotherapeutic target. As with many proteases, falcipain-2 is synthesized as a zymogen, and the prodomain inhibits activity of the mature enzyme. To investigate the mechanism of regulation of falcipain-2 by its prodomain, we expressed constructs encoding different portions of the prodomain and tested their ability to inhibit recombinant mature falcipain-2. We identified a C-terminal segment (Leu155–Asp243) of the prodomain, including two motifs (ERFNIN and GNFD) that are conserved in cathepsin L sub-family papain family proteases, as the mediator of prodomain inhibitory activity. Circular dichroism analysis showed that the prodomain including the C-terminal segment, but not constructs lacking this segment, was rich in secondary structure, suggesting that the segment plays a crucial role in protein folding. The falcipain-2 prodomain also efficiently inhibited other papain family proteases, including cathepsin K, cathepsin L, cathepsin B, and cruzain, but it did not inhibit cathepsin C or tested proteases of other classes. A structural model of pro-falcipain-2 was constructed by homology modeling based on crystallographic structures of mature falcipain-2, procathepsin K, procathepsin L, and procaricain, offering insights into the nature of the interaction between the prodomain and mature domain of falcipain-2 as well as into the broad specificity of inhibitory activity of the falcipain-2 prodomain

    Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    Get PDF
    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD <2.0 Å), the DPM-HMM method performs as well or better than the best templates, demonstrating that our automated method recaptures these canonical loops without inclusion of any IgG specific terms or manual intervention. In cases with poor or few good templates (mean RMSD >7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/

    The Glasgow Outcome Scale -- 40 years of application and refinement

    Get PDF
    The Glasgow Outcome Scale (GOS) was first published in 1975 by Bryan Jennett and Michael Bond. With over 4,000 citations to the original paper, it is the most highly cited outcome measure in studies of brain injury and the second most-cited paper in clinical neurosurgery. The original GOS and the subsequently developed extended GOS (GOSE) are recommended by several national bodies as the outcome measure for major trauma and for head injury. The enduring appeal of the GOS is linked to its simplicity, short administration time, reliability and validity, stability, flexibility of administration (face-to-face, over the telephone and by post), cost-free availability and ease of access. These benefits apply to other derivatives of the scale, including the Glasgow Outcome at Discharge Scale (GODS) and the GOS paediatric revision. The GOS was devised to provide an overview of outcome and to focus on social recovery. Since the initial development of the GOS, there has been an increasing focus on the multidimensional nature of outcome after head injury. This Review charts the development of the GOS, its refinement and usage over the past 40 years, and considers its current and future roles in developing an understanding of brain injury

    The Integrin Receptor in Biologically Relevant Bilayers: Insights from Molecular Dynamics Simulations

    Get PDF
    Integrins are heterodimeric (αβ) cell surface receptors that are potential therapeutic targets for a number of diseases. Despite the existence of structural data for all parts of integrins, the structure of the complete integrin receptor is still not available. We have used available structural data to construct a model of the complete integrin receptor in complex with talin F2–F3 domain. It has been shown that the interactions of integrins with their lipid environment are crucial for their function but details of the integrin/lipid interactions remain elusive. In this study an integrin/talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin/talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2–F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction across cell membranes

    Reduced Satellite Cell Numbers and Myogenic Capacity in Aging Can Be Alleviated by Endurance Exercise

    Get PDF
    Background: Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary. Methodology: Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., exvivo). The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro). We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in bot

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
    corecore