514 research outputs found

    A glimpse at the flat-spacetime limit of quantum gravity using the Bekenstein argument in reverse

    Get PDF
    An insightful argument for a linear relation between the entropy and the area of a black hole was given by Bekenstein using only the energy-momentum dispersion relation, the uncertainty principle, and some properties of classical black holes. Recent analyses within String Theory and Loop Quantum Gravity describe black-hole entropy in terms of a dominant contribution, which indeed depends linearly on the area, and a leading log-area correction. We argue that, by reversing the Bekenstein argument, the log-area correction can provide insight on the energy-momentum dispersion relation and the uncertainty principle of a quantum-gravity theory. As examples we consider the energy-momentum dispersion relations that recently emerged in the Loop Quantum Gravity literature and the Generalized Uncertainty Principle that is expected to hold in String Theory.Comment: 7 pages, LaTex; this essay received an "honorable mention" in the 2004 Essay Competition of the Gravity Research Foundation; submitted to IJMPD on 23 June 2004; published as Int.J.Mod.Phys.D13:2337-2343,200

    Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    Get PDF
    Submarine volcanic vents are being used as natural laboratories to assess the effects of increased ocean acidity and carbon dioxide (CO2) concentration on marine organisms and communities. However, in the vicinity of volcanic vents other factors in addition to CO2, which is the main gaseous component of the emissions, may directly or indirectly confound the biota responses to high CO2. Here we used for the first time the expression of antioxidant and stress-related genes of the seagrass Posidonia oceanica to assess the stress levels of the species. Our hypothesis is that unknown factors are causing metabolic stress that may confound the putative effects attributed to CO2 enrichment only. We analyzed the expression of 35 antioxidant and stress-related genes of P. oceanica in the vicinity of submerged volcanic vents located in the islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was used to characterize gene expression patterns. Fifty-one percent of genes analyzed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls at both Ischia and Panarea, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The up-regulation of genes involved in the free radical detoxification response (e.g., CAPX, SODCP and GR) indicates that, in contrast with Ischia, P. oceanica at the Panarea site faces stressors that result in the production of reactive oxygen species, triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. These proteins are activated to adjust stress-accumulated misfolded proteins and prevent their aggregation as a response to some stressors, not necessarily high temperature. This is the first study analyzing the expression of target genes in marine plants living near natural CO2 vents. Our results call for contention to the general claim of seagrasses as "winners" in a high-CO2 world, based on observations near volcanic vents. Careful consideration of factors that are at play in natural vents sites other than CO2 and acidification is required. This study also constitutes a first step for using stress-related genes as indicators of environmental pressures in a changing ocean.project HighGrass "High-CO2 effects on seagrass photosynthetic ecophysiology" [PTDC/MAREST/3687/2012]; MIUR Italian flagship project RITMARE; ESF COST Action "Seagrass Productivity: from genes to ecosystem management

    2b-RAD Genotyping of the Seagrass Cymodocea nodosa Along a Latitudinal Cline Identifies Candidate Genes for Environmental Adaptation

    Get PDF
    Plant populations distributed along broad latitudinal gradients often show patterns of clinal variation in genotype and phenotype. Differences in photoperiod and temperature cues across latitudes influence major phenological events, such as timing of flowering or seed dormancy. Here, we used an array of 4,941 SNPs derived from 2b-RAD genotyping to characterize population differentiation and levels of genetic and genotypic diversity of three populations of the seagrass Cymodocea nodosa along a latitudinal gradient extending across the Atlantic-Mediterranean boundary (i.e., Gran Canaria—Canary Islands, Faro—Portugal, and Ebro Delta—Spain). Our main goal was to search for potential outlier loci that could underlie adaptive differentiation of populations across the latitudinal distribution of the species. We hypothesized that such polymorphisms could be related to variation in photoperiod-temperature regime occurring across latitudes. The three populations were clearly differentiated and exhibited diverse levels of clonality and genetic diversity. Cymodocea nodosa from the Mediterranean displayed the highest genotypic richness, while the Portuguese population had the highest clonality values. Gran Canaria exhibited the lowest genetic diversity (as observed heterozygosity). Nine SNPs were reliably identified as outliers across the three sites by two different methods (i.e., BayeScan and pcadapt), and three SNPs could be associated to specific protein-coding genes by screening available C. nodosa transcriptomes. Two SNPs-carrying contigs encoded for transcription factors, while the other one encoded for an enzyme specifically involved in the regulation of flowering time, namely Lysine-specific histone demethylase 1 homolog 2. When analyzing biological processes enriched within the whole dataset of outlier SNPs identified by at least one method, “regulation of transcription” and “signalling” were among the most represented. Our results highlight the fundamental importance signal integration and gene-regulatory networks, as well as epigenetic regulation via DNA (de)methylation, could have for enabling adaptation of seagrass populations along environmental gradients

    Photodinamic therapy with toipical aminolevulinic acid for the treatment of plantar warts

    Get PDF
    Aim. treatment currently employed for plantar warts (PW) are often painfl and poorly effective. This study evaluates the effect of photodynamic therapy (PDT) with δ-aminolevulinic acid (ALA) on PW. Methods. Before treatment, the superficial hyperkeratotic layer of warts was removed by the application, for 7 days, of an ointment containing 10% urea and 10% salicylic acid. Then, after gentle curettage, a cream containing 20% ALA was applied under occlusive dressing for 3h on 3 patients with 84 warts, while 30 patients with 62 warts (controls) receveid only base cream. Both groups were irradiated using a visible light lamp (range 400-700 n, peaking at 630 nm). The light dose was 50 J/cm2 each session. Patients were followed-up for 12 months. During the treatemtn some patients referred mild burning sensation or slight pain. The absorption of ALA in warts was investigated and demonstrated by in vivo fluorescence spectroscopy. Results. Two months after the last irradiative session, 84.5% of the ALA-PDT treated lesions and 22.5% of controls had resolved. Conclusions. The results of this study suggest that topical ALA-PDT can be considered as alternative treatment for PW

    A king and vassals' tale: Molecular signatures of clonal integration in Posidonia oceanica under chronic light shortage

    Get PDF
    Under unfavourable conditions, clonal plants benefit from physiological integration among ramets, sharing resources and information. Clonal integration can buffer against environmental changes and lets the plant clone work as a ‘macro’ organism. Molecular signals that regulate this phenomenon are completely unknown in marine plants. Here we present a first comprehensive study providing insights into the metabolic role of different types of ramets (i.e. apical vs. vertical) in the foundation species Posidonia oceanica. Plants were exposed to 80% diminishing irradiance level (LL) in a controlled mesocosm system. Subsequent multiscale variations in whole transcriptome expression, global DNA methylation level, photo-physiology, morphology and fitness-related traits, were explored at different exposure times. We tested the hypothesis that vertical shoots (the ‘vassals’) can provide vital resources to apical shoots (the ‘kings’) under energy shortage, thus safeguarding the whole clone survival. Whole transcriptome analysis of leaves and shoot-apical meristems (SAMs) emphasized signatures of molecular integration among ramets, which strongly correlated with higher organization-level responses. In both shoots types, the exposure to LL resulted in a growth slowdown throughout the experiment, which started from immediate signals in SAMs. In apical shoots, this was linked to an acclimative response, where they were suffering a mild stress condition, while in vertical ones it fell in a more severe stress response. Yet, they suffered from sugar starvation and showed a clear cellular stress response in terms of protein refolding and DNA repair mechanisms. Several epigenetic mechanisms modulated the observed gene-expression patterns and the cross-talk between DNA methylation and the cellular energetic status appeared to regulate shoot metabolism under LL. Synthesis. Our results demonstrate a high level of specialization of integrated ramets within seagrass clones and a ‘division of labour’ under adverse conditions. Vertical shoots appear to do ‘most of the job’ especially in terms of resource providing, whereas activated functions in apical shoots were restricted to few important processes, according to an ‘energy-saving’ strategy. The response of vertical shoots could be seen as a ‘sacrificing response’ allowing the survival of ‘the king’ that is key for ensuring propagation and population maintenance, and for the colonization of new environments

    DNA methylation dynamics in a coastal foundation seagrass species under abiotic stressors

    Get PDF
    DNA methylation (DNAm) has been intensively studied in terrestrial plants in response to environmental changes, but its dynamic changes in a temporal scale remain unexplored in marine plants. The seagrass Posidonia oceanica ranks among the slowest-growing and longest-living plants on Earth, and is particularly vulnerable to sea warming and local anthropogenic pressures. Here, we analysed the dynamics of DNAm changes in plants collected from coastal areas differentially impacted by eutrophication (i.e. oligotrophic, Ol; eutrophic, Eu) and exposed to abiotic stressors (nutrients, temperature increase and their combination). Levels of global DNAm (% 5-mC) and the expression of key genes involved in DNAm were assessed after one, two and five weeks of exposure. Results revealed a clear differentiation between plants, depending on environmental stimuli, time of exposure and plants' origin. % 5-mC levels were higher during the initial stress exposure especially in Ol plants, which upregulated almost all genes involved in DNAm. Contrarily, Eu plants showed lower expression levels, which increased under chronic exposure to stressors, particularly to temperature. These findings show that DNAm is dynamic in P. oceanica during stress exposure and underlined that environmental epigenetic variations could be implicated in the regulation of acclimation and phenotypic differences depending on local conditions

    Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess

    Get PDF
    The intensification of anomalous events of seawater warming and the co-occurrence with local anthropogenic stressors are threatening coastal marine habitats, including seagrasses, which form extensive underwater meadows. Eutrophication highly affects coastal environments, potentially summing up to the widespread effects of global climate changes. In the present study, we investigated for the first time in seagrasses, the transcriptional response of different plant organs (i.e., leaf and shoot apical meristem, SAM) of the Mediterranean seagrass Posidonia oceanica growing in environments with a different history of nutrient enrichment. To this end, a mesocosm experiment exposing plants to single (nutrient enrichment or temperature increase) and multiple stressors (nutrient enrichment plus temperature increase), was performed. Results revealed a differential transcriptome regulation of plants under single and multiple stressors, showing an organ-specific sensitivity depending on plants' origin. While leaf tissues were more responsive to nutrient stress, SAM revealed a higher sensitivity to temperature treatments, especially in plants already impacted in their native environment. The exposure to stress conditions induced the modulation of different biological processes. Plants living in an oligotrophic environment were more responsive to nutrients compared to plants from a eutrophic environment. Evidences that epigenetic mechanisms were involved in the regulation of transcriptional reprogramming were also observed in both plants’ organs. These results represent a further step in the comprehension of seagrass response to abiotic stressors pointing out the importance of local pressures in a global warming scenario.En prens

    Daily Regulation of Key Metabolic Pathways in Two Seagrasses Under Natural Light Conditions

    Get PDF
    The circadian clock is an endogenous time-keeping mechanism that enables organisms to adapt to external environmental cycles. It produces rhythms of plant metabolism and physiology, and interacts with signaling pathways controlling daily and seasonal environmental responses through gene expression regulation. Downstream metabolic outputs, such as photosynthesis and sugar metabolism, besides being affected by the clock, can also contribute to the circadian timing itself. In marine plants, studies of circadian rhythms are still way behind in respect to terrestrial species, which strongly limits the understanding of how they coordinate their physiology and energetic metabolism with environmental signals at sea. Here, we provided a first description of daily timing of key core clock components and clock output pathways in two seagrass species, Cymodocea nodosa and Zostera marina (order Alismatales), co-occurring at the same geographic location, thus exposed to identical natural variations in photoperiod. Large differences were observed between species in the daily timing of accumulation of transcripts related to key metabolic pathways, such as photosynthesis and sucrose synthesis/transport, highlighting the importance of intrinsic biological, and likely ecological attributes of the species in determining the periodicity of functions. The two species exhibited a differential sensitivity to light-to-dark and dark-to-light transition times and could adopt different growth timing based on a differential strategy of resource allocation and mobilization throughout the day, possibly coordinated by the circadian clock. This behavior could potentially derive from divergent evolutionary adaptations of the species to their bio-geographical range of distributions

    Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    Get PDF
    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed
    corecore