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For seagrasses, seasonal and daily variations in light and temperature represent the
mains factors driving their distribution along the bathymetric cline. Changes in these
environmental factors, due to climatic and anthropogenic effects, can compromise their
survival. In a framework of conservation and restoration, it becomes crucial to improve
our knowledge about the physiological plasticity of seagrass species along environmental
gradients. Here, we aimed to identify differences in transcriptomic and proteomic
profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia
oceanica, and to improve the available molecular resources in this species, which is
an important requisite for the application of eco-genomic approaches. To do that, from
plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we
generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive
Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles,
and (ii) we identified proteins differentially expressed, using the highly innovative USIS
mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free
approach. Mass spectra were searched in the open source Global Proteome Machine
(GPM) engine against plant databases and with the X!Tandem algorithm against a local
database. Transcriptional analysis showed both quantitative and qualitative differences
between depths. EST libraries had only the 3% of transcripts in common. A total of 315
peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase
subunits were among the most abundant proteins in both conditions. Both approaches
identified genes and proteins in pathways related to energy metabolism, transport and
genetic information processing, that appear to be the most involved in depth acclimation
in P. oceanica. Their putative rules in acclimation to depth were discussed.
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INTRODUCTION
The littoral coastal zone is characterized by severe environmental
gradients, which mold distribution of populations and species of
marine organisms. In a framework of conservation and restora-
tion of biodiversity and in order to predict responses to environ-
mental changes and to develop ad hoc conservation strategies, it
is crucial to improve our knowledge about the limits of phys-
iological acclimation, physiological plasticity, and intraspecific
traits variation, of species living along environmental gradient
(Thomas et al., 2004; Schmidt et al., 2008; Thomas, 2010; Hill
et al., 2010).

Along the coastline all over the world, excluding polar areas
(Green and Short, 2003), seagrasses form among the most pro-
ductive and neglected marine ecosystems, providing an high
number of ecosystem’s services, also in comparison to terrestrial
habitats (Costanza, 1997; McArthur and Boland, 2006).

Seagrass meadows are very sensitive to disturbance and are
being lost rapidly in both developed and developing parts of

the world (Short and Wyllie-Echeverria, 1996; Waycott et al.,
2009), with only occasional efforts for mitigation and restora-
tion. Seagrass loss has been attributed to a broad spectrum of
anthropogenic and natural causes that largely diminish their
habitat, affecting their distribution and diversity (Orth et al.,
2006; Waycott et al., 2009). For marine plants, seasonal and
daily variations in light availability and temperature represent the
mains factors driving their distributions along the bathymetric
cline. Changes in these environmental factors, due to climatic and
anthropogenic effects, can compromise the survival of these key
ecosystem-engineering species (Doney et al., 2002).

In Mediterranean Sea, the endemic seagrass Posidonia oceanica
(L.) Delile can grow as deep as 50 m, depending on light penetra-
tion and water clarity (Pasqualini et al., 1998), being extremely
sensitive to changes in light availability (Lee et al., 2007). The
increase of water turbidity, widely observed as result of human
activities along the coastline, affects particularly the deep dis-
tribution of the meadows (Ardizzone et al., 2006). P. oceanica
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grows according to a phalanx strategy, with sporadic sexual
reproduction and slow-growing clonal lineages, which can per-
sist in situ for hundreds of years (Ruggiero et al., 2002; Migliaccio
et al., 2005; Arnaud-Haond et al., 2012). Plasticity of P. oceanica
long-living clones must play an important role on the persis-
tence of the species, being able to survive changes of envi-
ronmental conditions, as the ones experienced by the unstable
highly-impacted Mediterranean coastline.

During the last decades, the application of -omics technolo-
gies at ecological studies provided powerful tools for following
the physiological acclimation in response to environmental vari-
ations (Feder and Walser, 2005; Foret et al., 2007; Gracey, 2007;
Karr, 2008), and helped researchers to correlate the differences of
gene’s expression profiles to changes in the main ecological cues in
many different organisms (Chevalier et al., 2004; Edge et al., 2008;
Kassahn et al., 2009; Larsen et al., 2012; Richards et al., 2012).

Despite their high ecological value, seagrasses are poorly
understood for what concerns the genetic basis behind their
physiological adaptation and plasticity (Procaccini et al., 2007).
It’s only recently that transcriptomic approaches were imple-
mented for few species, to correlate seagrasses gene expression
with ecological factors. In particular, transcriptomic response to
temperature changes and thermal stress was studies in the two
congeneric species, Zostera marina and Zostera noltii (Maathuis
et al., 2003; Reusch et al., 2008; Massa et al., 2011; Winters
et al., 2011), while transcriptional (Bruno et al., 2010; Serra et al.,
2012b) and proteomic approaches (Mazzuca et al., 2009) were
applied to study light response in natural conditions in Posidonia
oceanica. In P. oceanica, studies were hampered by the fact that
available genomic and transcriptomic resources only consisted in
a single Expressed Sequences Tags (EST) library, obtained from
shoots collected along a depth range (from −5 to −30 m) in a sin-
gle site (Wissler et al., 2009), and available in Dr.Zompo, a specific
seagrasses database containing both P. oceanica and Z. marina
EST sequences http://drzompo.uni-muenster.de/ (Wissler et al.,
2009).

Several approaches can be utilized for genomic studies in
species for which the whole genome is not available (e.g.,
Hofmann et al., 2005; Stapley et al., 2010), most of them
requiring high computational power and advanced bioinformat-
ics resources (Morozova and Marra, 2008; Pop and Salzberg,
2008; Metzker, 2010). Among the others, Suppressive Subtractive
Hybridization (SSH)–EST library (Diatchenko et al., 1996)
approach resulted especially powerful to identify differentially
expressed genes in the presence of clear differences in physio-
logical status (Jones et al., 2006; Puthoff and Smigocki, 2007)
and it was applied to study flowering (Matsumoto, 2006), senes-
cence (Liu et al., 2008a,b), or salt-stress (Zouari et al., 2007) in
terrestrial plants.

The aim of this work was to identify differences in transcrip-
tional and proteomic profiles in P. oceanica, correlated with its
bathymetric distribution, with the ultimate goal to identify the
metabolic pathways involved in acclimation. We also aimed to
increase genomic resources in P. oceanica and to present a pow-
erful approach for studying physiological response at a molecular
level in organisms for which genomic resources are limited.

In order to do that, we built a SSH-library between plants
growing at two different depths in the same meadow, and we

obtained their protein content using the innovative USIS mass
spectrometry methodology coupled with 1D-SDS electrophore-
sis. Proteins identifications were performed using the Global
Proteome Machine (GPM) open-source system for analyzing,
storing, and validating proteomics information derived from tan-
dem mass spectrometry (Craig et al., 2004; Fenyö et al., 2010) and
X!Tandem software (Craig and Beavis, 2003; Craig et al., 2005)
against a local database derived by Dr.Zompo and UniProtKB
databases.

MATERIALS AND METHODS
SHOOTS SAMPLING
Posidonia oceanica shoots were collected by SCUBA diving in the
Lacco Ameno meadow, Island of Ischia (Gulf of Naples, 40◦45′52′′
N; 13◦53′29′′ E) at two sampling stations located above and below
the summer thermocline (−5 and −25 m depths).

Leaf tissue from 20 shoots for each stand was cleaned from epi-
phytes and shock frozen in dry ice on the research vessel soon after
collection. Tissue was stored at −80◦C before RNA and proteins
extraction.

Temperature, salinity and Photosynthetic Active Radiation
(PAR) were measured at the surface and at six different depths
along the bathymetric distribution of the meadow (Table 1).
Values were obtained right before shoot sampling, using a Seabird
Seacat Probe operated from the boat and connected to a wired
computer onboard.

RNA EXTRACTION
Total RNA was isolated from leaf tissue of ten shoots for each con-
dition, using hexadecyltrimertihyl ammonium bromide (CTAB)
method (Chang et al., 1993) with some modifications. About 4 g
of each shoot were weighted and grind to a fine powder in liquid
nitrogen in a pre-cooled mortal. The powder was transferred to
an Eppendorf tube and 1 ml of pre-warmed extraction buffer was
added to the samples (2% CTAB, 0.2% β-mercaptoethanol, 1.4 M
NaCl, 20 mM EDTA, 200 mM Tris-HCl pH 7.5). After incubation
at 65◦C for 10 min, 800 μl chloroform-isoamyl alcohol (49:1 v/v)
were added. After centrifugation, at 6500 rpm for 10 min, the
RNA was selectively precipitated from the upper phase through
the addition of 1/4 volume 10 M LiCl and precipitated for 2–4 h
at −20◦C. RNA was recovered by centrifugation (Beckman JA-20

Table 1 | Environmental variables.

Depth (m) Temperature (◦C) Salinity (PSU) PAR (µM/m2/sec)

0 27.55 37.79 960

−5 26.84 37.78 703

−10 24.03 37.75 491

−15 22.24 37.74 355

−20 20.02 37.78 230

−25 18.99 37.78 100

−30 18.12 37.79 50

Values of temperature, T (C◦); salinity (PSU); and Photosynthetically active radia-

tion, PAR (µM/m2/sec) collected during the sampling (July, 2010 h ∼14:00) with

a Seabird Seacat Probe at the surface and at six depths along the bathymetric

distribution of the meadow (depth). Sampling stations are indicated in bold.
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rotor) at 11,000 rpm at 4◦C for 30 min. Supernatant contain-
ing genomic DNA was removed and pellets were washed once
with 1 ml 100% EtOH and two times with 1 ml 75% EtOH.
Precipitations were followed by centrifuging at 10,000 rpm for
5 min to remove the EtOH and pellets were dried at room temper-
ature for few minutes. RNA was suspended in 50 μl H2O RNase
free. RNA quality and quantity was evaluated by gel electrophore-
sis and by Nano-Drop (ND-1000 UV-Vis spectrophotometer;
NanoDrop Technologies) monitoring the absorbance at 260 nm.
Purity was determined by 260/280 nm and 260/230 nm ratios
using the same instrument. All samples resulted free from pro-
tein and organic solvents used during RNA extraction. RNA was
stored at −80◦C.

CONSTRUCTION OF SUPPRESSIVE SUBTRACTIVE HYBRIDIZATION
(SSH)-LIBRARIES
For each depths considered in the experiment, the same quantity
of total RNA extracted from individual shoot was pooled. About
280 μg of each RNA pools were purified using Dynabeads mRNA
Purification kit (DYNAL BIOTECH), following the manufactures
instructions, in order to select polyA+ mRNA.

The construction of the forward and reverse SSH libraries was
performed using the PCR-select cDNA subtraction kit (Clontech,
Palo Alto, CA, USA), following the manufacturers instruction.
Shallow library (FORWARD subtraction, S) was carried out with
shallow mRNA as tester pool and deep mRNA as driver pool.
Reversely, in the deep library (REVERSE subtraction, D), deep
mRNA was used as tester pool and shallow mRNA as driver pool.

The two resulting subtractive libraries were cloned individually
in pCR2.1-TOPO vector (Invitrogen), and transferred into TOP
F’ cells (Invitrogen) with vector: insert ratio 1:10, following man-
ufacturer’s instructions. Colonies were grown overnight in Petri
dishes with LB medium and Ampicillin (μg/ml). Afterwards, sin-
gle colonies were picked and transferred into 96-well plates con-
taining LB and Ampicillin (LB/Amp) to grow overnight. About
twenty 96-well plates for each library (S and D) were screened
in PCR to identified positive recombinant colonies. Every single
colony has been amplified using specific primers of the TOPO
vector: T7 forward and M13 reverse. PCR products have been
analyzed on 1.5% Agarose gel stained with Ethidium Bromide in
1× TAE buffer. For each library, about 1000 colonies having an
insert longer than 500 bp were selected for sequencing (data not
shown).

Finally, replicates of selected colonies were stored in LB/Amp-
15% glycerol (at −80◦C) and shipped to the Biologisch-
Technische Produkte Service of the Max Planck Institute for
Molecular Genetics (Molgen, Berlin, DE) for ESTs sequenc-
ing using ABI 3730xl automated DNA sequencers (Applied
Biosystems, USA).

DATA ANALYSES AND BIOINFORMATICS
Bioinformatics analysis of EST data sequences was carried out
by the Evolutionary Bioinformatics Group at the Westfälische
Wilhelms University Institute for Evolution and Biodiversity
(Münster, DE).

Raw sequences of each library were trimmed removing the
low quality regions, the vector, the adapter and the poly-A/T

regions, using PREGAP4 (Staden, 1996). Only the EST raw
sequences longer than 100 nucleotides entered the assembly step.
Successfully trimmed EST reads were assembled into tentative
unigenes (TUGs) using CAP3 (Huang, 1999). After trimming and
deletion of short sequences (94 in total), only sequences of good
quality were finally assembled into 486 TUG, which include 2290
ESTs. Considering other 286 single reads (Singletons), a total of
772 SSH-Unigenes were identified. To infer functions of SSH-
Unigenes, an homology search, using BLASTN algorithm, was
made against public multiple databases: non-redundant NCBI
Gene Ontology (GO), KEGG (Kyoto Encyclopedia of Genes and
Genomes), SWISSPROT, and NR-NCBI (using BLASTX algo-
rithm with an Expect-value threshold of = 0.001) and Dr.Zompo.
Identified Unigenes were stored in the database Dr.Zompo as
“Pooc_B” library. Divergence in gene expression patterns at the
two different depths, was assessed mapping Unigenes into func-
tional categories using Mapman (Thimm et al., 2004).

PROTEIN EXTRACTION AND ELECTROPHORESIS
Only adult leaves were used for this purpose according to
Spadafora et al. (2008). Plant material was grounded to a fine
powder in liquid N2 using mortar and pestle and transferred to
a centrifuge tube, where cold 10% trichloroacetic acid in ace-
tone with 0.1 M β-mercaptoethanol, was added. Samples were
kept at −20◦C for at least 2 h, and then centrifuged at 12,000 g
for 15 min at 4◦C. The resulting pellet was washed 3 times by
suspending in acetone containing 0.1 M DTT and centrifuged as
above between each wash. The pellet was air-dried and used for
protein extraction. Tissue powder from ten different plants from
shallow (A) and deep (B) conditions, respectively, was pooled and
used for phenol-based protein extraction (Spadafora et al., 2008).
Tissue powder was re-suspended in extraction buffer containing
0.1 M Tris-HCl, pH 8.8, 2% SDS and 0.1 M β-mercaptoethanol.
Supernatant was mixed with equal volume of buffered phe-
nol (pH 8.0, Sigma). Phases were separated by centrifugation
at 15,000 g for 5 min. The phenol phase was precipitated with
5 volumes of cold methanol containing 0.1 M ammonium acetate
overnight (−20◦C). Protein phase was recovered by centrifuga-
tion and washed twice with cold acetone. The phenol extraction
step has been repeated twice for each set of samples and thereafter
processed for mass spectrometry analyses.

Protein samples from Sets A and B were processed on 1D SDS-
PAGE; the Laemmli buffer system was used to cast a 6% stacking
gel and 12.5% resolving gel. After denaturation at 100◦C for
3 min, proteins were resolved at constant voltage (200 V) in a Bio-
Rad mini Protean II apparatus. CBB stained gels were scanned on
a densitometer (GS800, Biorad) and peptide bands were quan-
tified using QuantityOne software (Bio-Rad). 1D gel lines from
Sets A and B samples were cut in 24 slices each (Figure 1) and
digested enzymatically with trypsin. The tryptic fragments were
analyzed by LC-ESI MS/MS coupled with the ionization source
for mass spectrometers named Universal Soft Ionization Source
(USIS) (Cristoni S, patent no. PCT/EP2007/004094). For the
experiments, a Bruker HTC Ultra spectrometer, equipped with a
Dionex Ultimate 3000 HPLC system, was used. Chromatography
separations were conducted on a Thermo Biobasic C18 column
(1 mm i.d. _ 100 mm length and 5 μm particle size), using a linear
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gradient from 5 to 90% acetonitrile (ACN), containing 0.1%
formic acid with a flow of 100 μL/min, including the regenera-
tion step; one run lasted 70 min. Acquisitions were performed in
the data-dependent MS/MS scanning mode (full MS scan range of
m/z 250–2000 followed by full MS/MS scan for the most intense
ion from the MS scan).

PROTEIN IDENTIFICATION
Spectra acquired by LC-MS/MS were used to identify pep-
tide sequences using the open-source system GPM soft-
ware against the GPM plant database (http://plant.thegpm.org/
tandem/thegpmtandem.html). Since the GPM plant database
considers only a few species belonging to Liliopsida, excluding
seagrasses, this procedure can lead to a loss of peptide identifica-
tion by mass spectrometry. Thus, spectra acquired by LC-MS/MS
were also used to identify peptide sequences using X!Tandem
software (http://www.thegpm.org/tandem/index.html) against a
local database. X!Tandem is a search engine for identifying
proteins by searching sequence collections, reducing the time
required to match protein sequences with tandem mass spectra
(Craig and Beavis, 2003). It scores the match between an observed
tandem mass spectrum and a peptide sequence, by calculating
a score that is based on the intensities of the fragment ions and
the number of matching b- and y-ions. This score is converted to
an expectation value using the distribution of scores of randomly
matching peptides (Fenyö et al., 2010).

In the local database, sequences from seagrasses and other
species belonging to Liliopsida available in the UniprotKB
database and the amino acid sequences of P. oceanica and

FIGURE 1 | One-dimensional-SDS-PAGE. One-dimensional-SDS-PAGE of
two independent biological replicates of leaf proteins purified from shallow
(lanes 1 and 2) and deep (lanes 4 and 5) P. oceanica plants. Each gel lane
was cut in 24 slices, then each couple (1S;1D. . .24S;24D) from swallow and
deep lanes was comparatively analyzed by mass spectrometry as Sets A
and B datasets.

Z. marina deduced from five ESTs libraries (Pooc_A, Pooc_B,
Zoma_A, Zoma_B and Zoma_C) collected in the Dr.Zompo
database (Wissler et al., 2009, http://drzompo.uni-muenster.de/)
were included. In the last case, it has been necessary first to cre-
ate a protein database from the nucleotide sequences. For this,
the most straightforward procedure is listing all possible ORFs
from the six reading frames; the resulting list contains a large
majority of protein sequences that are unlikely to be real, but
MS/MS data allow to discriminate between real and false polypep-
tide sequences (Armengaud, 2009). The use of all possible reading
frames has allowed to optimize the peptide identifications. ESTs
are relatively error prone (Alba et al., 2004) and an ORF can be
split and displayed over 2 or 3 frames when a frame-shift error
exists on the cDNA sequence. Consequently, the deduced protein
sequence can be incorrect (Serra et al., 2012a). The translation of
each nucleotide sequence was performed using a translation tool
available at http://www.ebi.ac.uk/Tools/st/emboss_transeq/5.

RESULTS
SSH-LIBRARY
After assembly process and trimming, ESTs sequences clustered
to 772 TUGs, 286 of which were Singletons and 486 were
Contigs, consisting of two or more reads. Among the TUGs
identified, the 45% (349/772) had a GO annotation, while the
55% (423/772) were not classified in GO. Protein annotation
against SwissProt database, gave in total 278 Unigenes classified
into putative known functions or unclassified proteins. Based on
Dr.Zompo database, only the 39% of the total number of SSH-
Contigs (189/486) had homologies with known P. oceanica ESTs
sequences, while 61% (297/486) were new. The main statistic fea-
tures of the SSH–EST library are reported in Table 2, other data
are reported in Table S1.

Annotation and other features of SSH-TUGs are listed in
Tables S2a,b. TUGs were included in the database Dr.Zompo
(http://drzompo.uni-muenster.de/) in the P. oceanica “Pooc_B”
library. The 2576 single ESTs obtained were submitted to
the dbEST within GeneBank (LIB EST_Pooc SSH, Genbank
Accession Numbers: JZ354020–JZ356595).

COMPARISON OF TENTATIVE UNIGENES FREQUENCIES BETWEEN
SHALLOW AND DEEP CONDITIONS
Among the 486 Contigs identified, only 28 (3% of the total) were
present in both libraries, while 314 Contigs have been found

Table 2 | EST library features.

N◦

ESTs in shallow library 1330

ESTs in deep library 1246

Contigs in shallow library 200

Contigs in deep library 314

Contigs in common (shallow + deep) 28

Singletons only in shallow library 139

Singletons only in deep library 147

Comparison of main statistical features between shallow and deep Posidonia

oceanica EST libraries.
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only in the deep-library (D-library) and 200 Contigs only in
the shallow-library (S-library). For Singletons, 147 and 139 were
present only in the D-library and in the S-library, respectively
(Table 2).

TUGs more abundant in the S-library include (i) proteins
involved in protein turnover, as Proteasome subunit alpha,
E3 ubiquitin (F-box protein) and ATP-dependent Clp pro-
tease proteolytic subunit and (ii) proteins involved in stress
defense, as Heat shock cognate 70 kDa protein, Ketol-acid reduc-
toisomerase, Acyl-CoA-binding protein and Cytochromes c/b
subunits (Table S2a). TUGs more abundant in the D-library
include (i) proteins involved in the photosynthetic pathways
as Chlorophyll a-b-binding proteins, Photosystem I/II, Oxygen-
evolving enhancer protein and (ii) proteins involved in basal
metabolism and in stress response, as Universal stress protein,
Zinc-finger protein, Metallothionein-like protein, Cytochrome
P450, Caffeoyl-CoA O-methyltransferase, Aquaporin PIP2 and
S-norcoclaurine synthase (Table S2b).

Among Contigs, only six showed significant differences in
frequency (p ≤ 0.05) between libraries. Five Contigs were up-
regulated in S-library and only one was up-regulated in D-library
(Table 3). The differential expression of two of these Contigs,
Pooc_B_c42, encoding for a N(2),N(2)-dimethylguanosine
tRNA methyltransferase, and Pooc_B_c217, whose function is
unknown, has been tested in RT-qPCR and showed the expected
expression profiles (Figure S1, also see Serra et al., 2012b).

Since SSH technique can also generate background clones
which are not representing differentially expressed sequences but
can be false positives, we will consider the remaining transcripts
identified here as “putative differentially expressed” until each one
will be experimentally validated in future studies.

Differences between libraries were both quantitative, i.e., rel-
ative expression of particular Unigenes, assessed as number of
reads, and qualitative, i.e., comparing proteins for the same func-
tional categories or the same metabolic pathways. The compara-
tive abundance of each functional category is shown in Figure 2.
Genes belonging to light related processes (e.g., photosynthe-
sis and energetic metabolism), genetic information processing
(e.g., transcription and translation), transport, folding, sorting,
and degradation of proteins were abundant in both conditions.

Nevertheless, looking at different pathways, differences were
observed in their protein composition. For the photosynthetic
pathway, in the D-library there are 26 different TUGs encoding
for Chlorophyll a-b-binding proteins, whereas only 15 different
TUGs were present in the shallow one (Tables S2a,b). The oppo-
site trend was observed for proteins related to electrons carrier
transport (Tables S2a,b). TUGs assigned to PSI and PSII were
more abundant in low light (D-library) rather than in high light
(S-library), and this difference was particularly strong for PSI
(PSI: 2/19, PSII 19/24 reads in S- and D-library, respectively,
Figure 2). Other striking qualitative differences were observed
among stress response proteins. Universal stress proteins, as
Zinc-finger, Metallothionein-like, Cytochrome P450, Caffeoyl-
CoA O-methyltransferase, Aquaporin PIP2 and S-norcoclaurine
synthase were more abundant in the D-library (Table S2b), while
other proteins involved in stress defense, Heat shock cognate
70 kDa, Ketol-acid reductoisomerase, and Acyl-CoA-binding pro-
tein were more abundant in the S-library. TUGs belonging to
protein turnover, such as proteasome subunit alpha, E3 ubiquitin
(F-box protein), ATP-dependent Clp protease proteolytic subunit
(Table S2a) were more abundant in the S-library.

Peptide sequences from shallow and deep samples, their rel-
ative positive match against the different databases and their
functional annotations are reported as in Tables S3a (shallow)
and 3b (deep). Database search methods using the GPM and
X!Tandem software combined with classical BLASTN searching
method to identify peptide sequences, have allowed to assign the
large portion of the identified peptides at proteins with known
function, enhancing significantly our previous knowledge on the
P. oceanica proteome. After eliminating redundancies (i.e., pro-
teins common to the two sets of data), the total net protein
discovery amounts exactly to 64 proteins, which were principally
involved in photosynthesis and energy metabolism, with both
structural and regulative functions (Figure 3). Mitochondrial and
chloroplastic ATP synthase subunits were the most abundant.
The chloroplast isoforms of ATP synthase, which take part to
the Calvin cycle, were highly expressed in both light conditions,
while the mitochondrial isoforms, which take part to respira-
tion, appeared down regulated in low light. Proteins involved
in photosynthetic metabolic pathways, such as oxygen-evolving

Table 3 | List of Contigs differentially expressed.

Contig Annotation Best hit E-value Shallow Deep Regulation RT-qPCR

library (−5 m) library (−25 m) regulation

Pooc_B_c42 N(2),N(2)-dimethylguanosine
tRNA methyltransferase

Q34941 3.0e-14 15 0 UP-5 m UP-5 m

Pooc_B_c444 F-box protein At5g67140 Q9FH99 2.0e-28 16 0 UP-5 m

Pooc_B_c209 no hit – – 15 0 UP-5 m

Pooc_B_c205 no hit – – 341 19 UP-5 m

Pooc_B_c18 no hit – – 38 0 UP-5 m

Pooc_B_c217 cellular_component GO:0005575 – 0 17 UP-25 m UP-25 m

List of Contigs showing significant EST frequency difference between libraries (p ≤ 0.05). For each Contig, name, annotation, best hits E-value, number of EST

reads in each library, and regulation signals are indicated. Differential expression between the two depths reported in this work (shallow −5 m, deep −25 m) was

tested in RT-qPCR experiment by Serra et al. (2012b). RT-qPCR results are also reported in Figure S1 for Contigs Pooc_B_c42 and Pooc_B_c217 (in bold).
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FIGURE 2 | Expression Level of TUGs. Level Expression (number of EST) of TUGs associated to the different metabolic categories in shallow (white column)
and deep (black column) conditions.

enhancer proteins, were almost equally represented in the two
conditions. Though most of the identified proteins showed little
differences in number of peptides between the two conditions,
17 unique peptides were found only in shallow samples corre-
sponding to as many proteins (Table 4A); meanwhile, in deep
samples, 23 unique peptides that were not found in shallow ones
have been assigned to 18 proteins (Table 4B). Summarizing the

results, among the 64 newly identified proteins, 17 are exclusive
of shallow samples and 18 of the deep ones as shown by the Venn
diagrams (Figure 4). RuBisCO subunits, Chlorophyll a-b-binding
proteins and Ferredoxin-NADP reductase (leaf isozyme) were
more represented in the deep samples, while Glyceraldehyde-3-
phosphate dehydrogenase was more represented in the shallow
ones. Moreover, proteins with regulative activity, as the Ribulose
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FIGURE 3 | Expression Level of peptides. Level of expression (number of
peptides) associated to the different proteins in shallow, (white column) and
deep (black column) conditions.

bisphosphate carboxylase/oxygenase activase A and a 14-3-3-like
protein, were also recognized as more expressed in shallow in
respect to the deep samples.

DISCUSSION
The aim of this work was to investigate physiological acclima-
tion in Posidonia oceanica plants along a bathymetric gradient,
combining transcriptomic, and proteomic analyses. Plants were
collected after the stabilization of the summer thermocline, when
light and temperature regimes were well-differentiated between
the two selected sampling stations (−5 and −25 m).

A not perfect match between transcriptome and proteome
profiles was found, since some targets were identified only in
one of the two datasets (e.g., F-box protein only among ESTs;
RuBisCO only among peptides). Despite the correlation between
transcriptomic and proteomic profiles is usually high (e.g., Guo
et al., 2008), the effective level of observed accordance among
these data varies in dependence of the system studied (Pascal et al.,
2008; Vogel and Marcotte, 2012).

Furthermore, as also reminded from other authors (Feder and
Walser, 2005; Diz et al., 2012) in interpreting differences in tran-
scripts and peptides abundance, it should be taken in to account
that many different regulative steps during transcription and
translation processes influence the expression levels of mRNAs
and their corresponding protein.

Besides the problem of reading correctly differences in genes
and proteins expression profiles, a main question in combining
transcriptional and proteomic data analyses is also in how to asses
the interaction between them (Rogers et al., 2008; Huang et al.,
2013). In the present work, data obtained from both analyses were
discussed jointly, in order to asses the putative role and function
of each target recognized in P. oceanica acclimation to depth.

Overall, our results suggested that a large portion of genes
and proteins which were identified as putatively differentially
expressed, could be assigned to three principal metabolic path-
ways: Photosynthesis, Cellular energetic metabolism and Protein
turnover. Furthermore, pathways related to Signaling and Stress
response, though similar in their overall expression between the
two depths, showed different protein compositions.

PHOTOSYNTHETIC PROCESSES
Light availability, both intensity and quality, influences directly
and indirectly chloroplast metabolism (Jiao et al., 2007). The
modulation of photosynthetic machinery is critical in the short
term (day by day) and long-term (season, years) adaptation to
environmental light. In photosynthetic organisms, the adaptation
to different light conditions happens through adjustments of cel-
lular homeostasis to maintain a balance between energy supply
(light harvesting and electron transport) and consumption (cel-
lular metabolism). The regulation of these mechanisms involves
changes in the expression levels of both mRNA and mature pro-
teins. During the sampling, the irradiance at the deep stand
was about 1/10 of the irradiance present at the shallow stand,
with values that are very close to the theoretical minimum light
requirement estimated for P. oceanica (∼9–16% of surface irradi-
ance, Lee et al., 2007). Hence, many genes and proteins belonging
to the photosynthetic machinery resulted differentially regulated
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FIGURE 4 | Venn diagrams. Venn diagrams comparing the total protein
discovery with those found only in shallow or in deep samples. Among the
64 newly identified proteins, 17 are exclusive of shallow samples and 18 of
the deep ones.

between stands, in order to perform photosynthesis under such
different light conditions.

Transcriptional and proteomic profiles showed high differenti-
ation on Chlorophyll a-b-binding (Cab) proteins between the two
depths. An increase of Chlorophyll concentration under low-light
was reported for other seagrasses (Dennison, 1990; Sharon et al.,
2011). In P. oceanica chlorophyll rate was reported to vary not
only along the depth gradient, but also during different seasons
(Pirc, 1986). In addition, differences among Cab proteins iden-
tified between depths, suggest that in P. oceanica different Cab
proteins are utilized for the assembly of the antenna complex, in
response to specific photo-acclimation processes. It seems that, to
prevent photo-damage due to high-light, plants evolved different
strategies, such as the shrinking of PSII antenna size (Escoubas
et al., 1995) and thermal dissipation (Elrad et al., 2002). Changes
in antenna pigments compositions in low- light were also sug-
gested for P. oceanica and for other seagrasses by Casazza and
Mazzella (2002).

The relative quantity of transcripts and proteins recognized
in this study also suggests an increase in PSII and PSI tran-
scripts in deep plants in respect to the shallow ones (especially as
regards as PSI). Photosynthetic-organisms balance electron flow
between the two photosystems by modulating both antenna size
and photosystem stoichiometry (Chitnis, 2001), in response to
light intensity and quality. The redox status of the whole cell and
of the chloroplast and the ratio between ATP and NADPH could
also contribute in modulating PSI/II relative abundance (Chitnis,
2001). PSI/II ratio was found modified across depth also in the
seagrass Halophila stipulacea (Sharon et al., 2011), in macroalgae
(Fujita, 1997; Yamazaki et al., 2005) and cyanobacteria (Levitan
et al., 2010) as to indicate that this could be a general photo-
acclimatory mechanism. At the present, we are not able to explain
the regulative mechanisms underlying this differential modula-
tion between shallow and deep plants, but similar patterns of
PSI/II ratio were already observed in shallow P. oceanica meadows
growing under different light conditions (Mazzuca et al., 2009).
Authors reported a reorganization of the thylakoid architecture
under low-light conditions, that is consistent with the rearrange-
ment between the two photosystems, since approximately 85% of
PSII is located in the apprised domains of the grana and 64% of
PSI is located in the stroma lamellae.

Frontiers in Plant Science | Plant Proteomics June 2013 | Volume 4 | Article 195 | 10

http://www.frontiersin.org/Plant Proteomics
http://www.frontiersin.org/Plant Proteomics
http://www.frontiersin.org/Plant Proteomics/archive


Dattolo et al. Posidonia oceanica acclimation at depth

Another interesting hint suggested from our data for the
P. oceanica photosynthetic acclimation involves the enzyme
RuBisCo. The expression pattern of this enzyme between the two
light conditions was different from the expectation: we measured,
in fact, a similar content of this protein between shallow and deep
stations, with a slightly higher abundance in low-light, especially
for what concern the large subunit. This is in contrast with previ-
ous results, where Mazzuca et al. (2009) showed a clear decrease
of the same protein in low-light condition in P. oceanica. The
activity of RuBisCo responds to different environmental signals
including light, changes in source-sin balance, temperature and
circadian rhythms [reviewed in Portis (2003)]. However, regu-
lation of RuBisCo is mediated, among others, by the activity of
the chaperone Ribulose bisphosphate carboxylase/oxygenase acti-
vase A (RCA). This protein was identified in our collection as
over-expressed, even if at low levels, in low-light condition. RCA
is thought to have a key role in the regulation of photosynthe-
sis under different environmental stress conditions (Portis, 2003)
and during the daily cycle (Yin et al., 2010). In a recently study
of Yamori et al. (2012) it was reported that in low-light condi-
tion, high expression of RCA contributes to maintain RuBisCo in
high active state, helping in assuring high levels of CO2 assimila-
tion also under shade conditions. These observations open the
question regarding the real regulation mechanism of RuBisCo
in P. oceanica in response to light, especially for what regards
limiting light conditions.

CELLULAR ENERGETIC METABOLISM
For what concerns respiration, an overall increase of related
transcripts and proteins was recorded in shallow plants, proba-
bly related to the higher temperature present in respect to the
deeper portion of the meadow plants [overview in Touchette
and Burkholder (2000)]. Nevertheless, considering separately the
regulation of each of the three main stages of the respiratory
process, we see that glycolysis and electron transport chain steps
were strongly enhanced in high light, while the tricarboxylic acid
(TCA) cycle was higher in low light.

The understanding of the regulations of these pathways in
plants is further complicated by the interactions between them
and many other key elements (Fernie et al., 2004). Among the
putative regulatory enzymes of mitochondrial activity (Bunney
et al., 2001), a protein like 14-3-3 was recognized in our pep-
tide collections. Collectively, plant 14-3-3s isoforms, which bind
to phosphorylated client proteins to modulate their function, are
implicated in an expanding catalogue of physiological functions
and are affected by the extracellular and intracellular environ-
ment of the plant. They play a central role in the response
to the plant extracellular environment, particularly environ-
mental stress, pathogens, and light conditions (Denison et al.,
2011).

STRESS RESPONSE
Several transcripts encoding for proteins associated with stress
response and plant defense were detected in low-light. Amongst
these, metallothionein-like protein, which are implicated in
metal tolerance in plants (Cobbett, 2000), Catalase and
Oxygen-evolving enhancer proteins, which respond to reactive

oxygen species (ROS) stress and are responsible for the break-
down of hydrogen peroxide to oxygen and water (Blokhina, 2003)
and also the Cytochromes P450 family, which is implicated in
detoxification. It is known that P. oceanica may accumulate met-
als from the sediment in its organs and tissues (Warnau et al.,
1996; Schlacher-Hoenlinger and Schlacher, 1998) and the study
by Giordani et al. (2000) have demonstrated that treatments
with Mercury, Copper and Cadmium may induce the produc-
tion of Metallothionein proteins in this species. Moreover, in the
deep plants several transcripts encoding for Zinc finger domain
stress-associated proteins and the 2-caffeic-acido-methyl trans-
ferase, were also found. The same proteins were also previously
recognized (Mazzuca et al., 2009) in P. oceanica in similar envi-
ronmental condition and associated to biotic and abiotic stress
response (Cozza et al., 2006).

All these elements suggest that plants living in the deep stands
are more sensitive to oxidative stress than plants growing in shal-
low stands, due to the higher investment by the former in main-
taining basal metabolism and the consequent lower resources
available for cell defense and repair. In addition, deep plants could
also respond to exogenous oxidative stress due to the local distri-
bution of stressing factors, which seem to be more important in
the area of the bay where the deep stand is growing.

PROTEIN TURNOVER
Many clones with sequence homology on components of the
(Ub)Ubiquitin-26S proteasome pathway were identified in both
ESTs collections. This degradation pathway is involved in the
removal of abnormal polypeptides throughout normal protein
turnover, and provides the degradation of enzymes and key
regulatory factors of signal transduction, making it one of the
most elaborate regulatory mechanisms in plants, allowing cells
to respond rapidly to signal molecules and changes in environ-
mental conditions (Gagne et al., 2004; Moon et al., 2004). Higher
expression level of ubiquitin/26S proteins was already found in
P. oceanica as consequence of plants acclimation to low-light con-
ditions (Mazzuca et al., 2009). Three components of this complex
witch appeared to be more expressed in high-light condition in
comparison with low-light are involved in “protein-targeting”:
the E3 ubiquitin-protein ligase, a U-box and RING-box protein
and the SCF-E3, F-Box protein (Moon et al., 2004). The par-
ticipation of SCFs in plant development is extensive, affecting
processes such as hormone response, photo-morphogenesis, cir-
cadian rhythms, floral development, and senescence (Du et al.,
2009). Moreover, several studies support that F-box proteins such
as SCF E3, are also involved in phyA-mediated light signaling and
in the regulation of circadian clock, making it possible that SCF
proteins degrade a repressor of light response in preparation for
light signals at dawn (Harmon and Kay, 2003).

Furthermore, plants growing at the different depths appear
to respond not only to different environmental signals, but also
to different endogenous signaling, such as hormones. In shallow
plants, several component of the Ethylene signaling pathway were
detected, such as the above mentioned F-box proteins. At present,
information exists on the functions of a relatively small number
of F-box proteins and most of these are involved in regulation of
the hormone signaling pathway.

www.frontiersin.org June 2013 | Volume 4 | Article 195 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Plant Proteomics/archive


Dattolo et al. Posidonia oceanica acclimation at depth

The role of the SCF is to degrade repressors of hormone
response (auxin, GA, and JA), whereas in response to ethy-
lene, the SCF degrades positive regulators in the absence of the
hormone. The existing data strongly suggest that the principal
control point of Ethylene signaling regulation is protein degra-
dation via the ubiquitin/26S proteasome pathway (Potuschak
et al., 2003; Kendrick and Chang, 2009). Ethylene is an impor-
tant gaseous hormone’s regulator in several plants processes, as
(i) the regulation of endogenous rhythms, e.g., seed germination,
plant growth, leaf expansion, root hair formation, fruit ripen-
ing, and timing of vegetative senescence and (ii) the transduction
of environmental signaling, e.g., responses to abiotic stresses
and pathogen attack (Potuschak et al., 2003; Raab et al., 2009).
According to these indications, the different activity of ubiquitin-
mediated proteolysis recognized between shallow and deep grow-
ing plants of P. oceanica could depend from the different seasonal
timing at which they respond. Buia and Mazzella (1991) previ-
ously observed in the seagrasses P. oceanica, Cymodocea nodosa
and Zostera noltii, a clear shift in life cycle between plants grow-
ing in shallow and deep stands in the Mediterranean Sea, with
the effect that shallow plants (−5 m) complete their annual cycle
in early summer, turning into senescence, while at the same time
plants of the deep stands (−25 m) are fully growing. Our data
about the photo-acclimation response of P. oceanica along the
bathymetric gradient probably also reflect the different adjust-
ments in life cycle during the year of plants growing at different
depths. This allows plants to growth, optimizing the harvesting
and the utilization of the available light in the different sea-
sonal conditions and to minimize the negative effects due to
photo-damage.

In conclusion, this study allowed to identify several regula-
tory networks and metabolic pathways involved in environmental
signals response along the depth distribution of P. oceanica, and
allowed to improve the available molecular resources, which
is an important requisite for the application of eco-genomic
approaches in this species.
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Figure S1 | RT-qPCR SSH library. Expression levels of Pooc_B_c42 and

Pooc_B_c 217 (y-axis, Mean ± SD) in Posidonia oceanica shoots collected

at −25 m (deep-library). Shoots collected at −5 m (shallo-library) were

used as control and the expression level of GOI in the control is

represented in the figure by the x-axis. RT-qPCR data were normalized

(A) with the best RGs in this experimental condition (EF1A, L23, NTUBC,

Serra et al., 2012b), (B) using “universal” RGs (EF1A, NTUBC, 18S, and

UBI) (*p < 0.05, ***p < 0.001). Additional information on primers

sequences and RT-qPCR conditions in Serra et al. (2012b).

Table S1 | Additional statistics features of SSH–EST library. Additional

statistics features of SSH–ESTs Posidonia oceanica library.

Table S2a | List of Unigenes belonging to the shallow (high-light) library.

List of Unigenes belonging to the shallow (high-light) library. Unigenes

name, their functional annotation with the E-value, number of ESTs

identified (S_EST) and sequences lengths (Length) are indicated. For each

sequence, the presence of putative ORF (open reading frame), SSRs

(simple sequences repeats) and SNPs (single-nucleotide polymorphisms)

are also showed.

Table S2b | List of Unigenes belonging to the deep (low-light) library. List

of Unigenes belonging to the deep (low-light) library. Unigenes name, their

functional annotation with the E-value, number of ESTs identified (S_EST)

and sequences lengths (Length) are indicated. For each sequence, the

presence of putative ORF (open reading frame), SSRs (simple sequences

repeats) and SNPs (single-nucleotide polymorphisms) are also showed.

Table S3a | List of peptides identified in the 1DE gel of proteins from

shallow samples (S). List of peptides identified in the slices of 1DE gel of

proteins from shallow samples (S), the protein attribution obtained with

GPM and X!TANDEM sotfwares with the corresponding log(e) value,

functional annotation obtained with TBLASTN search against Dr.Zompo

database and corresponding E-value are shown.

Table S3b | List of peptides identified 1DE gel of proteins from deep

samples (D). List of peptides identified in the slices of 1DE gel of proteins

from deep samples (D), the protein attribution obtained with GPM and

X!TANDEM softwares with the corresponding log(e) value, functional

annotation obtained with TBLASTN search against Dr.Zompo database

and corresponding E-value are shown.
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