6,457 research outputs found

    A fast-neutron spectrometer of advanced design

    Get PDF
    Fast neutron spectrometer combines helium filled proportional counters with solid-state detectors to achieve the properties of high efficiency, good resolution, rapid response, and effective gamma ray rejection

    A light-cone gauge for black-hole perturbation theory

    Get PDF
    The geometrical meaning of the Eddington-Finkelstein coordinates of Schwarzschild spacetime is well understood: (i) the advanced-time coordinate v is constant on incoming light cones that converge toward r=0, (ii) the angles theta and phi are constant on the null generators of each light cone, (iii) the radial coordinate r is an affine-parameter distance along each generator, and (iv) r is an areal radius, in the sense that 4 pi r^2 is the area of each two-surface (v,r) = constant. The light-cone gauge of black-hole perturbation theory, which is formulated in this paper, places conditions on a perturbation of the Schwarzschild metric that ensure that properties (i)--(iii) of the coordinates are preserved in the perturbed spacetime. Property (iv) is lost in general, but it is retained in exceptional situations that are identified in this paper. Unlike other popular choices of gauge, the light-cone gauge produces a perturbed metric that is expressed in a meaningful coordinate system; this is a considerable asset that greatly facilitates the task of extracting physical consequences. We illustrate the use of the light-cone gauge by calculating the metric of a black hole immersed in a uniform magnetic field. We construct a three-parameter family of solutions to the perturbative Einstein-Maxwell equations and argue that it is applicable to a broader range of physical situations than the exact, two-parameter Schwarzschild-Melvin family.Comment: 12 page

    Light-cone coordinates based at a geodesic world line

    Get PDF
    Continuing work initiated in an earlier publication [Phys. Rev. D 69, 084007 (2004)], we construct a system of light-cone coordinates based at a geodesic world line of an arbitrary curved spacetime. The construction involves (i) an advanced-time or a retarded-time coordinate that labels past or future light cones centered on the world line, (ii) a radial coordinate that is an affine parameter on the null generators of these light cones, and (iii) angular coordinates that are constant on each generator. The spacetime metric is calculated in the light-cone coordinates, and it is expressed as an expansion in powers of the radial coordinate in terms of the irreducible components of the Riemann tensor evaluated on the world line. The formalism is illustrated in two simple applications, the first involving a comoving world line of a spatially-flat cosmology, the other featuring an observer placed on the axis of symmetry of Melvin's magnetic universe.Comment: 11 pages, 1 figur

    Age and Prostate-Specific Antigen Level Prior to Diagnosis Predict Risk of Death from Prostate Cancer.

    Get PDF
    A single early prostate-specific antigen (PSA) level has been correlated with a higher likelihood of prostate cancer diagnosis and death in younger men. PSA testing in older men has been considered of limited utility. We evaluated prostate cancer death in relation to age and PSA level immediately prior to prostate cancer diagnosis. Using the Veterans Affairs database, we identified 230,081 men aged 50-89 years diagnosed with prostate cancer and at least one prior PSA test between 1999 and 2009. Prostate cancer-specific death over time was calculated for patients stratified by age group (e.g., 50-59 years, through 80-89 years) and PSA range at diagnosis (10 ranges) using Kaplan-Meier methods. Risk of 10-year prostate cancer mortality across age and PSA was compared using log-rank tests with a Bonferroni adjustment for multiple testing. 10.5% of men diagnosed with prostate cancer died of cancer during the 10-year study period (mean follow-up = 3.7 years). Higher PSA values prior to diagnosis predict a higher risk of death in all age groups (p < 0.0001). Within the same PSA range, older age groups are at increased risk for death from prostate cancer (p < 0.0001). For PSA of 7-10 ng/mL, cancer-specific death, 10 years after diagnosis, increased from 7% for age 50-59 years to 51% for age 80-89 years. Men older than 70 years are more likely to die of prostate cancer at any PSA level than younger men, suggesting prostate cancer remains a significant problem among older men (even those aged 80+) and deserves additional study

    The general relativistic infinite plane

    Get PDF
    Uniform fields are one of the simplest and most pedagogically useful examples in introductory courses on electrostatics or Newtonian gravity. In general relativity there have been several proposals as to what constitutes a uniform field. In this article we examine two metrics that can be considered the general relativistic version of the infinite plane with finite mass per unit area. The first metric is the 4D version of the 5D "brane" world models which are the starting point for many current research papers. The second case is the cosmological domain wall metric. We examine to what extent these different metrics match or deviate from our Newtonian intuition about the gravitational field of an infinite plane. These solutions provide the beginning student in general relativity both computational practice and conceptual insight into Einstein's field equations. In addition they do this by introducing the student to material that is at the forefront of current research.Comment: Accepted for publication in the American Journal of Physic

    Probabilistic computer model of optimal runway turnoffs

    Get PDF
    Landing delays are currently a problem at major air carrier airports and many forecasters agree that airport congestion will get worse by the end of the century. It is anticipated that some types of delays can be reduced by an efficient optimal runway exist system allowing increased approach volumes necessary at congested airports. A computerized Probabilistic Runway Turnoff Model which locates exits and defines path geometry for a selected maximum occupancy time appropriate for each TERPS aircraft category is defined. The model includes an algorithm for lateral ride comfort limits

    Dimension-Dependence of the Critical Exponent in Spherically Symmetric Gravitational Collapse

    Full text link
    We study the critical behaviour of spherically symmetric scalar field collapse to black holes in spacetime dimensions other than four. We obtain reliable values for the scaling exponent in the supercritical region for dimensions in the range 3.5≤D≤143.5\leq D\leq 14. The critical exponent increases monotonically to an asymptotic value at large DD of γ∼0.466\gamma\sim0.466. The data is well fit by a simple exponential of the form: γ∼0.466(1−e−0.408D)\gamma \sim 0.466(1-e^{-0.408 D}).Comment: 5 pages, including 7 figures New version contains more data points, one extra graph and more accurate error bars. No changes to result

    An Audible Demonstration Of The Speed Of Sound In Bubbly Liquids

    Get PDF
    The speed of sound in a bubbly liquid is strongly dependent upon the volume fraction of the gas phase, the bubble size distribution, and the frequency of the acoustic excitation. At sufficiently low frequencies, the speed of sound depends primarily on the gas volume fraction. This effect can be audibly demonstrated using a one-dimensional acoustic waveguide, in which the flow rate of air bubbles injected into a water-filled tube is varied by the user. The normal modes of the waveguide are excited by the sound of the bubbles being injected into the tube. As the flow rate is varied, the speed of sound varies as well, and hence, the resonance frequencies shift. This can be clearly heard through the use of an amplified hydrophone and the user can create aesthetically pleasing and even musical sounds. In addition, the apparatus can be used to verify a simple mathematical model known as Wood's equation that relates the speed of sound of a bubbly liquid to its void fraction. (c) 2008 American Association of Physics Teachers.Mechanical Engineerin

    The equivalence principle, uniformly accelerated reference frames, and the uniform gravitational field

    Get PDF
    The relationship between uniformly accelerated reference frames in flat spacetime and the uniform gravitational field is examined in a relativistic context. It is shown that, contrary to previous statements in the pages of this journal, equivalence does not break down in this context. No restrictions to Newtonian approximations or small enclosures are necessary
    • …
    corecore