The geometrical meaning of the Eddington-Finkelstein coordinates of
Schwarzschild spacetime is well understood: (i) the advanced-time coordinate v
is constant on incoming light cones that converge toward r=0, (ii) the angles
theta and phi are constant on the null generators of each light cone, (iii) the
radial coordinate r is an affine-parameter distance along each generator, and
(iv) r is an areal radius, in the sense that 4 pi r^2 is the area of each
two-surface (v,r) = constant. The light-cone gauge of black-hole perturbation
theory, which is formulated in this paper, places conditions on a perturbation
of the Schwarzschild metric that ensure that properties (i)--(iii) of the
coordinates are preserved in the perturbed spacetime. Property (iv) is lost in
general, but it is retained in exceptional situations that are identified in
this paper. Unlike other popular choices of gauge, the light-cone gauge
produces a perturbed metric that is expressed in a meaningful coordinate
system; this is a considerable asset that greatly facilitates the task of
extracting physical consequences. We illustrate the use of the light-cone gauge
by calculating the metric of a black hole immersed in a uniform magnetic field.
We construct a three-parameter family of solutions to the perturbative
Einstein-Maxwell equations and argue that it is applicable to a broader range
of physical situations than the exact, two-parameter Schwarzschild-Melvin
family.Comment: 12 page