10,403 research outputs found

    Molecular Realism in Default Models for Information Theories of Hydrophobic Effects

    Get PDF
    This letter considers several physical arguments about contributions to hydrophobic hydration of inert gases, constructs default models to test them within information theories, and gives information theory predictions using those default models with moment information drawn from simulation of liquid water. Tested physical features include: packing or steric effects, the role of attractive forces that lower the solvent pressure, and the roughly tetrahedral coordination of water molecules in liquid water. Packing effects (hard sphere default model) and packing effects plus attractive forces (Lennard-Jones default model) are ineffective in improving the prediction of hydrophobic hydration free energies of inert gases over the previously used Gibbs and flat default models. However, a conceptually simple cluster Poisson model that incorporates tetrahedral coordination structure in the default model is one of the better performers for these predictions. These results provide a partial rationalization of the remarkable performance of the flat default model with two moments in previous applications. The cluster Poisson default model thus will be the subject of further refinement.Comment: 5 pages including 3 figure

    Final state interactions in two-particle interferometry

    Full text link
    We reconsider the influence of two-particle final state interactions (FSI) on two-particle Bose-Einstein interferometry. We concentrate in particular on the problem of particle emission at different times. Assuming chaoticity of the source, we derive a new general expression for the symmetrized two-particle cross section. We discuss the approximations needed to derive from the general result the Koonin-Pratt formula. Introducing a less stringent version of the so-called smoothness approximation we also derive a more accurate formula. It can be implemented into classical event generators and allows to calculate FSI corrected two-particle correlation functions via modified Bose-Einstein "weights".Comment: 12 pages RevTeX, 2 ps-figures included, submitted to Phys. Rev.

    Reflectance spectra of Fe(2+)-Mg(2+) disordered pyroxenes: Implications to remote-sensed spectra of planetary surfaces

    Get PDF
    The reflectance spectra of Fe(2+)-Mg(2+) disordered orthopyroxenes are relevant to surfaces of terrestrial planets onto which basaltic magma has been extruded. If cooling rates of basalt lava flows were fast, equilibrium iron intersite partitioning may not have been achieved so that abnormal enrichments of Fe(2+) ions in M1 sites would occur. The two intense pyroxene Fe(2+) site CF bands in the 1 micron and 2 micron regions would continue to dominate the the reflectance spectra so that the pyroxene composition and structure type would be readily identified in telescopic spectral profiles. However, abnormal intensification of the Fe(2+)/M1 site CF band at 1.20 microns could lead to the false identification of olivine in remote sensed spectra because in pyroxene-olivine mixtures the inflection around 1.20 microns is the only spectral feature for detecting the presence of olivine. The identification of iron-bearing plagioclase feldspars, too, would be obscured by the pyroxene Fe(2+)/M1 site CF band at 1.20 microns. Such interference would be a major problem if in situ reflectance spectra could be measured on the surface of Venus where ambient temperatures are as high as 475 C. Disordering of Fe(2+) and Mg(2+) ions comparable to that in the orthopyroxenes used in this spectral chemical study might be expected in low Ca pyroxenes occurring on the Venusian surface. Researchers conclude that Fe(2+)/M1 site spectral features need to be carefully assessed in remote-sensed spectra before deductions are made about the presence of olivine on planetary surfaces

    Construction of Simulation Wavefunctions for Aqueous Species: D3O+

    Full text link
    This paper investigates Monte Carlo techniques for construction of compact wavefunctions for the internal atomic motion of the D3O+ ion. The polarization force field models of Stillinger, et al and of Ojamae, et al. were used. Initial pair product wavefunctions were obtained from the asymptotic high temperature many-body density matrix after contraction to atom pairs using Metropolis Monte Carlo. Subsequent characterization shows these pair product wavefunctions to be well optimized for atom pair correlations despite that fact that the predicted zero point energies are too high. The pair product wavefunctions are suitable to use within variational Monte Carlo, including excited states, and density matrix Monte Carlo calculations. Together with the pair product wavefunctions, the traditional variational theorem permits identification of wavefunction features with significant potential for further optimization. The most important explicit correlation variable found for the D3O+ ion was the vector triple product {\bf r}OD1â‹…_{OD1}\cdot({\bf r}OD2Ă—_{OD2}\times{\bf r}OD3_{OD3}). Variational Monte Carlo with 9 of such explicitly correlated functions yielded a ground state wavefunction with an error of 5-6% in the zero point energy.Comment: 17 pages including 6 figures, typos correcte

    The hot gas content of fossil galaxy clusters

    Full text link
    We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M500,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal' clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.Comment: 4 pages, 2 figures. Accepted for publication in A&

    Revisiting scaling relations for giant radio halos in galaxy clusters

    Get PDF
    Many galaxy clusters host Megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck SZ catalog, to revisit the correlations between the power of halos and the thermal properties of galaxy clusters. We find that the radio power of halos at 1.4 GHz scales with the cluster X-ray (0.1--2.4 keV) luminosity computed within R_500 as P_1.4 L_500^2.0. Our bigger and more homogenous sample confirms that the X-ray luminous (L_500 > 5x10^44 erg/s) clusters branch into two populations --- radio halos lie on the correlation, while clusters with upper limits to radio-halo emission are well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. Correlating with Planck data, we find that P_1.4 scales with the cluster integrated SZ signal within R_500 as P_1.4 Y_500^2.1, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that the "SZ-luminous" Y_500 > 6x10^-5 Mpc^2 clusters show a bimodal behavior similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.Comment: 16 pages, 7 figures, accepted for publication in ApJ on September 12, 201
    • …
    corecore