887 research outputs found
Characteristic distributions of finite-time Lyapunov exponents
We study the probability densities of finite-time or \local Lyapunov
exponents (LLEs) in low-dimensional chaotic systems. While the multifractal
formalism describes how these densities behave in the asymptotic or long-time
limit, there are significant finite-size corrections which are coordinate
dependent. Depending on the nature of the dynamical state, the distribution of
local Lyapunov exponents has a characteristic shape. For intermittent dynamics,
and at crises, dynamical correlations lead to distributions with stretched
exponential tails, while for fully-developed chaos the probability density has
a cusp. Exact results are presented for the logistic map, . At
intermittency the density is markedly asymmetric, while for `typical' chaos, it
is known that the central limit theorem obtains and a Gaussian density results.
Local analysis provides information on the variation of predictability on
dynamical attractors. These densities, which are used to characterize the {\sl
nonuniform} spatial organization on chaotic attractors are robust to noise and
can therefore be measured from experimental data.Comment: To be appear in Phys. Rev
A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity
In this paper, we apply the thermodynamic framework recently put into place
by Rajagopal and co-workers, to develop rate-type models for viscoelastic
fluids which do not possess instantaneous elasticity. To illustrate the
capabilities of such models we make a specific choice for the specific
Helmholtz potential and the rate of dissipation and consider the creep and
stress relaxation response associated with the model. Given specific forms for
the Helmholtz potential and the rate of dissipation, the rate of dissipation is
maximized with the constraint that the difference between the stress power and
the rate of change of Helmholtz potential is equal to the rate of dissipation
and any other constraint that may be applicable such as incompressibility. We
show that the model that is developed exhibits fluid-like characteristics and
is incapable of instantaneous elastic response. It also includes Maxwell-like
and Kelvin-Voigt-like viscoelastic materials (when certain material moduli take
special values).Comment: 18 pages, 5 figure
Interruption of torus doubling bifurcation and genesis of strange nonchaotic attractors in a quasiperiodically forced map : Mechanisms and their characterizations
A simple quasiperiodically forced one-dimensional cubic map is shown to
exhibit very many types of routes to chaos via strange nonchaotic attractors
(SNAs) with reference to a two-parameter space. The routes include
transitions to chaos via SNAs from both one frequency torus and period doubled
torus. In the former case, we identify the fractalization and type I
intermittency routes. In the latter case, we point out that atleast four
distinct routes through which the truncation of torus doubling bifurcation and
the birth of SNAs take place in this model. In particular, the formation of
SNAs through Heagy-Hammel, fractalization and type--III intermittent mechanisms
are described. In addition, it has been found that in this system there are
some regions in the parameter space where a novel dynamics involving a sudden
expansion of the attractor which tames the growth of period-doubling
bifurcation takes place, giving birth to SNA. The SNAs created through
different mechanisms are characterized by the behaviour of the Lyapunov
exponents and their variance, by the estimation of phase sensitivity exponent
as well as through the distribution of finite-time Lyapunov exponents.Comment: 27 pages, RevTeX 4, 16 EPS figures. Phys. Rev. E (2001) to appea
The study of the Relationships of Microcystis aeruginosa to the Geographically Diverse Distribution
Cyanobacteria blooms occurred worldwide, including in India Microcystis aeruginosa is a cyanotoxins producing species that occurs in aquatic habitats such as lakes and rivers and varies with different geographical locations. Microcystin (Hepatotoxin) causes serious health hazards in humans, animals, and aquatic living organisms. The ability of microcystin to inhibit the growth of cancer cell lines may lead to the discovery of effective anticancer drugs, pharmacological and toxicological significance of the cyanobacterial genera Microcystis. The influence of nutritional, physicochemical, and environmental factors had effects on the release of microcystin (Hepatotoxin) in Microcystis aeruginosa in different aquatic environments of central India. In this study, we investigated the distribution of potentially-toxic Microcystis aeruginosa for environmental factors that influence the abundance of Microcystis aeruginosa cell density in lakes, dams, and rivers of different aquatic regions (Bhopal, Ujjain, Tikamgarh, Gwalior, and Rewa) of central India. Microcystis aeruginosa populations were found in 97.5% of the sites, with the number of cells peaking in the rainy season (7.3 x 106 cells L?1), followed by similar trends in the winter season (6.1 x 106 cells L?1), and a significant decrease in the summer (4.2 x 106 cells L?1). Seasonal significant differences were observed in the rainy (p>0.07), winter (p>0.05) and summer (p>0.02) seasons in Microcystis aruginosa. Thus, a significant difference in microcystin-producing Microcystis aeruginosa cells and Chl-concentrations throughout the year, correlating with these various biological and physicochemical parameters, confirms the importance of local environmental factors like phosphorus, nitrate, DO concentration, and pH, as well as regional conditions like distance from built areas and nature reserve parameters, in influencing the geographical distribution of toxigenic Microcystis. Furthermore, the results show that microcystin identified the pharmacological importance of the cyanobacterial genera Microcystis aeruginosa.
 
Non-Abelian Vortices in Supersymmetric Gauge Field Theory via Direct Methods
Vortices in supersymmetric gauge field theory are important constructs in a
basic conceptual phenomenon commonly referred to as the dual Meissner effect
which is responsible for color confinement. Based on a direct minimization
approach, we present a series of sharp existence and uniqueness theorems for
the solutions of some non-Abelian vortex equations governing color-charged
multiply distributed flux tubes, which provide an essential mechanism for
linear confinement. Over a doubly periodic domain, existence results are
obtained under explicitly stated necessary and sufficient conditions that
relate the size of the domain, the vortex numbers, and the underlying physical
coupling parameters of the models. Over the full plane, existence results are
valid for arbitrary vortex numbers and coupling parameters. In all cases,
solutions are unique.Comment: 38 pages, late
Probing R-parity violating models of neutrino mass at the Tevatron via top Squark decays
We have estimated the limiting branching ratio of the R-parity violating
(RPV) decay of the lighter top squark, \tilde t_1 \ar l^+ d ( or
and d is a down type quark of any flavor), as a function of top squark
mass(\MST) for an observable signal in the di-lepton plus di-jet channel at
the Tevatron RUN-II experiment with 2 fb luminosity. Our simulations
indicate that the lepton number violating nature of the underlying decay
dynamics can be confirmed via the reconstruction of \MST. The above decay is
interesting in the context of RPV models of neutrino mass where the RPV
couplings () driving the above decay are constrained to be
small (\lsim 10^{-3} - 10^{-4} ). If is the next lightest super
particle - a theoretically well motivated scenario - then the RPV decay can
naturally compete with the R-parity conserving (RPC) modes which also have
suppressed widths. The model independent limiting BR can delineate the
parameter space in specific supersymmetric models, where the dominating RPV
decay is observable and predict the minimum magnitude of the RPV coupling that
will be sensitive to Run-II data. We have found it to be in the same ballpark
value required by models of neutrino mass, for a wide range of \MST. A
comprehensive future strategy for linking top squark decays with models of
neutrino mass is sketched.Comment: 28 pages, 14 Figure
Multiorder coherent Raman scattering of a quantum probe field
We study the multiorder coherent Raman scattering of a quantum probe field in
a far-off-resonance medium with a prepared coherence. Under the conditions of
negligible dispersion and limited bandwidth, we derive a Bessel-function
solution for the sideband field operators. We analytically and numerically
calculate various quantum statistical characteristics of the sideband fields.
We show that the multiorder coherent Raman process can replicate the
statistical properties of a single-mode quantum probe field into a broad comb
of generated Raman sidebands. We also study the mixing and modulation of photon
statistical properties in the case of two-mode input. We show that the prepared
Raman coherence and the medium length can be used as control parameters to
switch a sideband field from one type of photon statistics to another type, or
from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.
Prevalence and risk of hepatitis e virus infection in the HIV population of Nepal
Background: Infection with the hepatitis E virus (HEV) can cause acute hepatitis in endemic areas in immune-competent hosts, as well as chronic infection in immune-compromised subjects in non-endemic areas. Most studies assessing HEV infection in HIV-infected populations have been performed in developed countries that are usually affected by HEV genotype 3. The objective of this study is to measure the prevalence and risk of acquiring HEV among HIV-infected individuals in Nepal. Methods: We prospectively evaluated 459 Human Immunodeficiency Virus (HIV)-positive individuals from Nepal, an endemic country for HEV, for seroprevalence of HEV and assessed risk factors associated with HEV infection. All individuals were on antiretroviral therapy and healthy blood donors were used as controls. Results: We found a high prevalence of HEV IgG (39.4%) and HEV IgM (15.3%) in HIV-positive subjects when compared to healthy HIV-negative controls: 9.5% and 4.4%, respectively (OR: 6.17, 95% CI 4.42-8.61, p < 0.001 and OR: 3.7, 95% CI 2.35-5.92, p < 0.001, respectively). Individuals residing in the Kathmandu area showed a significantly higher HEV IgG seroprevalance compared to individuals residing outside of Kathmandu (76.8% vs 11.1%, OR: 30.33, 95% CI 18.02-51.04, p = 0.001). Mean CD4 counts, HIV viral load and presence of hepatitis B surface antigen correlated with higher HEV IgM rate, while presence of hepatitis C antibody correlated with higher rate of HEV IgG in serum. Overall, individuals with HEV IgM positivity had higher levels of alanine aminotransferase (ALT) than IgM negative subjects, suggesting active acute infection. However, no specific symptoms for hepatitis were identified. Conclusions: HIV-positive subjects living in Kathmandu are at higher risk of acquiring HEV infection as compared to the general population and to HIV-positive subjects living outside Kathmandu
Grain Surface Models and Data for Astrochemistry
AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
- …
