1,027 research outputs found

    Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction

    Full text link
    The Gaussian Approximation, proposed originally by Ottinger [J. Chem. Phys., 90 (1) : 463-473, 1989] to account for the influence of fluctuations in hydrodynamic interactions in Rouse chains, is adapted here to derive a new mean-field approximation for the FENE spring force. This "FENE-PG" force law approximately accounts for spring-force fluctuations, which are neglected in the widely used FENE-P approximation. The Gaussian Approximation for hydrodynamic interactions is combined with the FENE-P and FENE-PG spring force approximations to obtain approximate models for finitely-extensible bead-spring chains with hydrodynamic interactions. The closed set of ODE's governing the evolution of the second-moments of the configurational probability distribution in the approximate models are used to generate predictions of rheological properties in steady and unsteady shear and uniaxial extensional flows, which are found to be in good agreement with the exact results obtained with Brownian dynamics simulations. In particular, predictions of coil-stretch hysteresis are in quantitative agreement with simulations' results. Additional simplifying diagonalization-of-normal-modes assumptions are found to lead to considerable savings in computation time, without significant loss in accuracy.Comment: 26 pages, 17 figures, 2 tables, 75 numbered equations, 1 appendix with 10 numbered equations Submitted to J. Chem. Phys. on 6 February 200

    Filtering data streams for entity-based continuous queries

    Get PDF
    The idea of allowing query users to relax their correctness requirements in order to improve performance of a data stream management system (e.g., location-based services and sensor networks) has been recently studied. By exploiting the maximum error (or tolerance) allowed in query answers, algorithms for reducing the use of system resources have been developed. In most of these works, however, query tolerance is expressed as a numerical value, which may be difficult to specify. We observe that in many situations, users may not be concerned with the actual value of an answer, but rather which object satisfies a query (e.g., "who is my nearest neighbor?). In particular, an entity-based query returns only the names of objects that satisfy the query. For these queries, it is possible to specify a tolerance that is "nonvalue-based. In this paper, we study fraction-based tolerance, a type of nonvalue-based tolerance, where a user specifies the maximum fractions of a query answer that can be false positives and false negatives. We develop fraction-based tolerance for two major classes of entity-based queries: 1) nonrank-based query (e.g., range queries) and 2) rank-based query (e.g., k-nearest-neighbor queries). These definitions provide users with an alternative to specify the maximum tolerance allowed in their answers. We further investigate how these definitions can be exploited in a distributed stream environment. We design adaptive filter algorithms that allow updates be dropped conditionally at the data stream sources without affecting the overall query correctness. Extensive experimental results show that our protocols reduce the use of network and energy resources significantly. © 2006 IEEE.published_or_final_versio

    Synthesis of gamma ferric oxide by direct thermal decomposition of ferrous carbonate

    Get PDF
    Ferrous carbonate was precipitated from the reaction of ferrous sulfate and sodium carbonate in an aqueous medium. The precipitate was calcined at different heating rates (2, 5 and 10 °C/min, respectively) up to 500°C and the iron oxides produced were found to be magnetic. X-ray diffraction studies indicated the presence of gamma ferric oxide as a major phase in all the cases. It was found that wet precipitates, faster heating rate and short residence time in the furnace produced gamma ferric oxides with better magnetic properties (coercivity of around 360 Oe and saturation magnetization of 64 emu/g). The effect of aging time of ferrous carbonate precipitates on the magnetic properties was also studied

    Indexing multi-dimensional uncertain data with arbitrary probability density functions

    Get PDF
    Research Session 26: Spatial and Temporal DatabasesIn an "uncertain database", an object o is associated with a multi-dimensional probability density function (pdf), which describes the likelihood that o appears at each position in the data space. A fundamental operation is the "probabilistic range search" which, given a value p q and a rectangular area r q, retrieves the objects that appear in r q with probabilities at least p q. In this paper, we propose the U-tree, an access method designed to optimize both the I/O and CPU time of range retrieval on multi-dimensional imprecise data. The new structure is fully dynamic (i.e., objects can be incrementally inserted/deleted in any order), and does not place any constraints on the data pdfs. We verify the query and update efficiency of U-trees with extensive experiments.postprintThe 31st International Conference on Very Large Data Bases (VLDB 2005), Trondheim, Norway, 30 August-2 September 2005. In Proceedings of 31st VLDB, 2005, v. 3, p. 922-93

    Magnetic field simulations and measurements on the mini-ICAL detector

    Full text link
    The ICAL (Iron Calorimeter) is a 51 kTon magnetized detector proposed by the INO collaboration. It is designed to detect muons with energies in the 1-20 GeV range. A magnetic field of about 1.5 T in the ICAL detector will be generated by passing a DC current through suitable copper coils. This will enable it to distinguish between muons and anti-muons that will be generated from the interaction of atmospheric muon neutrinos and anti-neutrinos with iron. This will help in resolving the open question of mass ordering in the neutrino sector. Apart from charge identification, the magnetic field will be used to reconstruct the muon momentum (direction and magnitude). Therefore it is important to know the magnetic field in the detector as accurately as possible. We present here an (indirect) measurement of the magnetic field in the 85 ton prototype mini-ICAL detector working in Madurai, Tamil Nadu, for different coil currents. A detailed 3-D finite element simulation was done for the mini-ICAL geometry using Infolytica MagNet software and the magnetic field was computed for different coil currents. This paper presents, for the first time, a comparison of the magnetic field measured in the air gaps with the simulated magnetic field, to validate the simulation using real time data. Using the simulations the magnetic field inside the iron is estimated.Comment: 20 pages, 22 figures, latex sourc

    A tuberculosis prevalence survey based on symptoms questioning and sputum examination

    Get PDF
    A sample survey was undertaken in Raichur district of Karnataka State to estimate the prevalence of bacteriologically positive pulmonary tuberculosis among symptomatics aged 15 years and above. A population of 72,448 persons was registered in a representative sample of 57 villages and 21 enumeration blocks. Of the 42,580 persons aged 15 years and above eligible for symptoms questioning, 40,657 (95.5%) were examined and 3,846 (9.5%) were found to be symptomatics and eligible for sputum examination. Sputum was collected from 3,685 (95.8%) of the 3,846 symptomatics, and subjected to bacteriological examination i.e., smear, culture and drug susceptibility. Certain important findings were as follows: (i) the number of symptomatics increased with increase in age, more often among males (11.9%) than among females (7.1%), (ii) the prevalence of tuberculosis, as assessed by smear and/or culture was 10.9 per 1,000 in population aged 15 years and above, (iii) the prevalence increased with age and was 3 times higher among males as compared to females, (iv) cough was found to be the predominant symptom among the symptomatics (87%) as well as among the cases detected (92%), (v) the prevalence rate based on smear examination of the sputum specimens, using the two microscopy methods (Ziehl-Neelsen and Fluorescence) was 7.6 per 1,000, (vi) culture examination of these specimens yielded 3.3 per 1,100 additional cases, (vii) both the microscopy methods were equally efficient in detecting smear positives, (vii) of the 355 culture positive cases, 17.7% were resistant to Streptomycin, 29.6% to Isoniazid and 7.6% to Rifampicin either alone or in combination with other drugs

    Imaginary Potential as a Counter of Delay Time for Wave Reflection from a 1D Random Potential

    Get PDF
    We show that the delay time distribution for wave reflection from a one-dimensional random potential is related directly to that of the reflection coefficient, derived with an arbitrarily small but uniform imaginary part added to the random potential. Physically, the reflection coefficient, being exponential in the time dwelt in the presence of the imaginary part, provides a natural counter for it. The delay time distribution then follows straightforwardly from our earlier results for the reflection coefficient, and coincides with the distribution obtained recently by Texier and Comtet [C.Texier and A. Comtet, Phys.Rev.Lett. {\bf 82}, 4220 (1999)],with all moments infinite. Delay time distribution for a random amplifying medium is then derived . In this case, however, all moments work out to be finite.Comment: 4 pages, RevTeX, replaced with added proof, figure and references. To appear in Phys. Rev. B Jan01 200

    Super-reflection of light from a random amplifying medium with disorder in the complex refractive index : Statistics of fluctuations

    Full text link
    The probability distribution of the reflection coefficient for light reflected from a one-dimensional random amplifying medium with {\it cross-correlated} spatial disorder in the real and the imaginary parts of the refractive index is derived using the method of invariant imbedding. The statistics of fluctuations have been obtained for both the correlated telegraph noise and the Gaussian white-noise models for the disorder. In both cases, an enhanced backscattering (super-reflection with reflection coefficient greater than unity) results because of coherent feedback due to Anderson localization and coherent amplification in the medium. The results show that the effect of randomness in the imaginary part of the refractive index on localization and super-reflection is qualitatively different.Comment: RevTex 6 pages, 3 figures in ps file

    A special purpose silicon compiler for designing supercomputing VLSI systems

    Get PDF
    Design of general/special purpose supercomputing VLSI systems for numeric algorithm execution involves tackling two important aspects, namely their computational and communication complexities. Development of software tools for designing such systems itself becomes complex. Hence a novel design methodology has to be developed. For designing such complex systems a special purpose silicon compiler is needed in which: the computational and communicational structures of different numeric algorithms should be taken into account to simplify the silicon compiler design, the approach is macrocell based, and the software tools at different levels (algorithm down to the VLSI circuit layout) should get integrated. In this paper a special purpose silicon (SPS) compiler based on PACUBE macrocell VLSI arrays for designing supercomputing VLSI systems is presented. It is shown that turn-around time and silicon real estate get reduced over the silicon compilers based on PLA's, SLA's, and gate arrays. The first two silicon compiler characteristics mentioned above enable the SPS compiler to perform systolic mapping (at the macrocell level) of algorithms whose computational structures are of GIPOP (generalized inner product outer product) form. Direct systolic mapping on PLA's, SLA's, and gate arrays is very difficult as they are micro-cell based. A novel GIPOP processor is under development using this special purpose silicon compiler

    Ficus racemosa Stem Bark Extract: A Potent Antioxidant and a Probable Natural Radioprotector

    Get PDF
    Ethanol extract (FRE) and water extract (FRW) of Ficus racemosa (family: Moraceae) were subjected to free radical scavenging both by steady state and time resolved methods such as nanosecond pulse radiolysis and stopped-flow spectrophotometric analyses. FRE exhibited significantly higher steady state antioxidant activity than FRW. FRE exhibited concentration dependent DPPH, ABTS•−, hydroxyl radical and superoxide radical scavenging and inhibition of lipid peroxidation with IC50 comparable with tested standard compounds. In vitro radioprotective potential of FRE was studied using micronucleus assay in irradiated Chinese hamster lung fibroblast cells (V79). Pretreatment with different doses of FRE 1h prior to 2 Gy γ-radiation resulted in a significant (P < 0.001) decrease in the percentage of micronucleated binuclear V79 cells. Maximum radioprotection was observed at 20 μg/ml of FRE. The radioprotection was found to be significant (P < 0.01) when cells were treated with optimum dose of FRE (20 μg/ml) 1 h prior to 0.5, 1, 2, 3 and 4 Gy γ-irradiation compared to the respective radiation controls. The cytokinesis-block proliferative index indicated that FRE does not alter radiation induced cell cycle delay. Based on all these results we conclude that the ethanol extract of F. racemosa acts as a potent antioxidant and a probable radioprotector
    corecore