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Abstract- Design of general/special purpose Supereomputing VLSI systems for

numeric algorithm execution involves tackling two important aspects namely

their computational and eommunleatlon complexities. Development of soft-

ware tools for designing such systems itself becomes complex. Hence a novel

design methodology has to be developed. For designing such complex systems

a speeial purpose silleon compiler is needed in which

1. The computational and communieatlonal structures of different numeric

algorithms should be taken into account to simplify the silicon compiler

design.

2. The approach is maerocell based.

3. The software tools at different levels,algorithm down to the VLSI circuit

layout_ should get integrated.

In this paper a special purpose silicon (SPS) compiler based on PACUBE

macrocell VLSI ARRAYS [1] for designing supercomputing VLSI systems is

presented. It is shown that turn-around-time and silicon real estate get reduced

over the silicon compilers based on PLAs_SLAs and gate arrays.

Characteristics 1 and 2 above enable the SPS compiler to perform systolic

mapping (at the macrocell level) of algorithms whose computational structures

are of GIPOP (Generalized Inner Product Outer Product) form [2]. Direct

systolic mapping on PLAs_ SLAs and gate arrays is very difficult as they are

micro-cell based. A novel GIPOP processor is under development using this

special purpose silicon compiler.
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1 Introduction

No silicon compiler has yet been developed exclusively for tackling the complexity in de-

signing supercomputing VLSI systems. In developing such a compiler besides achieving re-

duced turn-around-time and area, computational performance of mapped functional units

and architectural characteristics like systolic mapping should also be considered. The latter

two factors are not taken care of in micro-cell based silicon compilers.

In conventional compilers the software tools are not integrated from algorithm down to

the VLSI circuit level. The integration of software tools at different levels can be achieved

by adopting novel methodologies in designing supercomputing VLSI systems (processors

and arrays) and developing novel algorithm mapping techniques. This integration reduces

the software complexity to a great extent.

The turn-around-time is high if gate arrays, PLAs and SLAs are employed for super-

computing system synthesis. Furth_t_e :silicon compilation should take place at a much

higher level than at the gate or the micro-ceU level for supercomputlng system design.

The PACUBE macro-cell structure is a combination of PLAs, SLAs,gate arrays and

standard cells.B%side s_storage and logic elements an important computing unit,the DRAA

(Dynamically Reconfigurabie Array Adder [1] ) is also present (Fig 1). The presence of tlae

DRAA reduces the turn-around-time and silicon area drastically for designing special pur-

pose VLSI systems. =The DRAA helps _ achieving h lgh performance due to-its functional

and architectural characteristics. If the DRAA were to be mapped on to PLAs, SLAs

and gate arrays the performance w_ get degraded.The special purpose silicon compiler

built for mapping supercomputing systems on the PACUBE arrays achieves all the above

factors.

2 PACUBE Macrocell Array And Systolic Mapping

Tools.

2.1 Unified GIPOP Operations On Macrocell Arrays

Execution of number of numeric algorithms involve inner-product operations. Several

VLS_systems: have been proposed for executing numeric algorithms whose computational

structures are of inner:product form. For this purpose VLSI arrays of inner-product step

processors have been employed conventionally.

In general the computational structure of numeric algorithms are complex. However

on a closer study it is noted that these structures can be brought under a generalized form

called Generalized inner:Pr0duct Outer-Product (GiPOP) functions_ These are

I = _ (Ai* Bi)...
i=1 Ci

o- (A'+B,)...
i=l Ci

(1)

(2)
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Figure 1: PAi 3 (ASLA) Logic Model

The computational structures of numeric algorithms may involve a mathematical com-

bination of the above two equations. Evaluation of GIPOP functions based computations

involve inner-product operations, chain multiplications, outer-product operations and re-

ciprocal operations.

It is shown in this paper that by using PACUBE VLSI arrays [1] these GIPOP func-

tions can be evaluated as a sum of equivalent weighted inner-product functions only. Also

massive parallelism can be employed in GIPOP operations. This unification of the execu-

tion processes of GIPOP functions only in terms of equivalent inner-product operations is

achieved by establishing an identical inter and intra macrocell connections (data flow map-

ping ) on PACUBE arrays for chain multiplication and inner-product operations. Both

the outer-product and reciprocal operations can be expressed in terms of sum of chain

multiplication operations [3].

Let the inner-product,chaln multiplication, outer-product and reciprocal operations be
defined as follows.

T,

• Jg,)p} = T,} (3)
i=1

Tt

II{_(S,)p + dg,)p} = O{_,(S_)p, _(K_)v , Tt} (4)
i=1
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Tt

II{_(s,),} = c{w(s,),, T,}
{=1

= c{w(s,)., _(s,).,... _(s_,)_}
1

-_s,)p - R{_(s,)_}

S1, $2, ...,Si and K1, K2, ...,Ki are the operands of word length p bits.

w - The weight of the MSB of the word length.

Tt - Number of inner-product terms (operand pairs) or

Number of chain multiplication terms (operands).

_(s,), --_ {_.(s,)_.,_._,(s,),.,,,..._,(s,),,}
,_(K,)p _ {,,,,.(K,)p.,,,,._,(S,)p.,_,,...,,,,(K,)p,}

pl Word length of the partition i, i - 1 to n

w_ Weight of the MSB of the partition (pl + p2 +'" "p_)

Using the relationships (7) and (8) we get

(7)
(s)

Tt

= Pl +P2 + "'" +P,, = Y_P Pl
i=1

Tt

w =wl+w2+...+w,=_w/
i=1

('*' Defines binary multiplication)

_ _q,)r, * _( K, )p = ,_+ d Q , )p+p

2.2 Inner-product operations on PACUBE Arrays

(9)

(10)

Execution of inner product operations on PACUBE arrays has been dealt in [1]. To achieve

massive parallelism in evaluating inner-product functions partial product arrays (PPAs)

of the different product terms .... =

are obtained in parallel (forming a massive array) and added simultaneously [1]. Refer

to Fig. 2a. There are three different ways of massive array formation and reduction [2].

They are called MAR1, MAR2 and MAR3 processes. The figure 2a corresponds to

I(3(A,),, a(B,),, 4)

function.The reduction processes corresponding to MAR2 and MAR3 are similar to

MAR1 reduction process presented in [1].

The MAR Process should be chosen such that the following important criteria are taken

ca, re of
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.

.

.

4.

5.

The operands [4,4] sub matrices of the massive array injection into the PACUBE

array should be simpler.

The partial sum bits output corresponding to the sum output of the massive array

should occur in consecutive cycles of the array reduction process.

The partial sum output should be of same length in all cycles .

The partial sum output should occur only in the peripheral macroceUs.

The intra macrocell data flow should be regular i.e. there is no multiplexing of data
between macrocells.

6. Number of array reduction cycles and number of macrocells should be minimum.

2.3 Chain Multiplication On PACUBE Arrays

The application of PACUBE array can be extended for chain multiplication operation.

Consider the massive array formation for

C(3(A,),, 3}

Similar to inner product operation three different types of massive array can be formed

for executing chain multiplication. Refer to Fig. 2b. Only MAR2 massive array formation
is shown.

2.4 Unification Of Chain Multiplication And Inner Product Op-

erations On PACUBE Arrays

There is a striking similarity between array formation corresponding to the inner product

and chain multiplication operations. The only difference is in the array sizes. The massive

array of C{3(Ai)4, 3} is larger than that of I{3(Ai)4, 3(Bi)4, 4}. In this example the differ-

ence in array sizes is not much. In general the massive arrays corresponding to the inner

product and chain multiplication operations can be made of comparable sizes by a proper

choice of the word length and number Of terms. Hence identical array reduction process

having same inter and intra macrocell data flow can be established on the PACUBE macro-

cell arrays. The operand injection points differ for these operations. Hence structurally

these two operations are equivalent. Such equivalent pairs may not exist for certain values

of word length and number of terms. In some cases even if the equivalent pairs exist the

word length of the pairs may be of odd values. The word length of the equivalent pairs

should have values in powers of 2. It is preferable to have equal word length for such

equivalent pairs. The values of number of terms (problem size) can be adjusted to achieve
this.

For example in the equivalent pair I{s(Si)s, s(Ki)s, 8} and C{s(Si)s, 3} the word

lengths are same but the number of terms are different. The equivalent pair
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Figure 2: MAR process-2 array formation

I{te(S+)te, tB(Ki)tB, 4}, C{te(St)ts, s(S+)s, s(S3)s, 3} has different word length and prob-

lem size. But C{,s(S,),+, ,s(S+)te, ,e(Sz),s, 3} can be easily decomposed (by proper word

length and term/problem size partitioning)in terms of C{,_(S_)_s, s(S_)s, 8(Sz)s, 3}. That

is C{_a(Si),_, Tt} can be decomposed to/{16(Sl)z_, t_(Ki),_, 4}. Further details on this is

dealt in section 3.3.

This leads to a unified PACUBE VLSI array for executing Inner product and Chain

multiplication operations. Outer product operation and high speed multiplicative division

algorithm [3] are based on chain multiplication operation. Hence the execution processes

of GIPOP functions can be unified on the PACUBE macrocel] arrays.

2.5 Systolic Mapping Of GIPOP Functions

An algorithm has been developed for automatic systolic mapping of GIPOP function ex-

ecution on the P-arrays and implemented under DOS. (Fig 3). The unification of the

execution processes of the GIPOP functions has greatly simplified the development of

systolic mapping tools.
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Figure 3: Systolic mapping of GIPOP functions on Pacube arrays
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3 GIPOP Processor Array And Software Tools For

Algorithm Mapping

3.1 GIPOP Processor

Existing processor arrays meant for supercomputing are classified into special purpose

and programmable general purpose arrays. An attempt to combine the advantages of

these approaches has culminated in a novel processor design approach, namely GIPOP

processor arrays. This novel approach is expected to give very high performance/cost
ratio for supercomputing systems [2].

The internal architecture of the GIPOP processor and its instruction set is shown in

Figure 4. The simulation of the instruction set has been completed. The GIPOP processor

can execute the equivalent pair I{a(Si)4, a(K_)4, 4} and C{a(Si)4, 3}.

The equivalent pairs are chosen based on the PACUBE macroceLl, GIPOP processor
and the array complexities.

3.2 GIPOP Processor Array

Two levels of pipellning take place in algorithm execution on tile GIPOP processor array

partly shown in Figure 4 ,one at the macro-cell level within the GIPOP chip and the other

at the processor level. The Processor level pipelining is controlled by the Array Control
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Figure 4: GIPOP processor archuitecture for equivalent pair
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Unit (ACU) and the macrocell level pipelining is controlled by the chip control unit (CCU).

The hardware complexity of the switch lattice depends on the processor complexity, data

communication complexity in an algorithm and the word length. The design of the ACU

is under progress.

3.3 Mapping Of Numeric Algorithms On GIPOP Processor Ar-

ray

Mapping of numeric algorithms on the GIPOP processor array involves tackling the com-

putational (levels 1 & 2) and communicational (level 3) complexities.

Level 1. Decomposing the computational structure of the algorithm in terms of

GIPOP equations which are further decomposed in terms of the inner

product functions only [1].

Level 2. The architectural capabilities of a GIPOP processor is bounded by prob-

lem size and worcUength. Suitable algorithms for problem size and word

length partitioning of GIPOP functions and the corresponding software

tools have been developed. The algorithm is based on definitions (3) -

(6) []. Refer to Figure 5.

Level 3. a. Proper loading of input operand frames into the high speed processor

memory (Block level memory loading) from the system memory.
b. Programming the processor and array control units.

Numeric algorithm mapping on the GIPOP arrays basically involve mapping of different

inner product blocks (IP Blocks) of variable complexities (see Fig 2c). Functionally each

of these IP Blocks may correspond to different GIPOP operations.The data flow between

the corresponding group of GIPOP processors (making an IP block) can be syntactically

described including both the functional and behavioral aspects of the GIPOP processor

[2] .Mapping of an algorithm on the arrays is to get this syntactical description of the data
flOW.

Software tools for levels 1 and 3 are being developed. The novel concept of mapping

numeric algorithms on the GIPOP processor array shown in Figure 2c greatly simplifies

the development of software tools for levels 1 and 3 above.

4 PACUBE Logic Level

4.1 Inter And Intra Cell Routing.

An efficient algorithm for inter and intra macrocell routing has been developed taking into

account the shortest path considerations. The software tools are shown in Figure 6 as
flowcharts.
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Figure 5: Wordlength & term partitioning

Subprogram (Functional Units) Library Generation And Link-

ing.

Several subprograms, Sequential and C0mblnatorial,have beenmapped on tile PACUBE

macrocell. An ei_cient PACUBE Hardware Description Language (PHDL) has been de-

veloped. The subprogram linking is done using this PHDL and the related software tool

has been developed. ( Fig. 7 )

5 PACUBE Circuit Level Discussions

5.1 Interactive Layout Generation And Checking.

A software tool for the generation of device level layouts in an interactive fashion has

been developed (Fig. 8). It provides four layers viz Diffusion, Polysilicon and two levels

of metal. The package supports both n-well and p-well CMOS processes. Lambda based

design rules have been adopted. Special facilities such as mirroring, translation, rotation,

m

L
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Figure 6: Inter-cell logic level tool

step gz repeat , cut _ paste and scaling are available to aid in faster design. The layout of

an entire macrocell has been developed using this tool. Layout geometries are expressed

using PACUBE device level codes. The design rule checker developed is edge based and

performs both inter and intra layer checking.

The different functional units of the macroceU are treated as standard cells and de-

pending on the application the required standard cells can be placed within the maerocell.

This option gives rise to macroceU arrays with different sizes of macroeells.

5.2 Intracell And Intercell Mapping.

A software translator for the PACUBE logic level code to PACUBE device level code

conversion and a device level to Caltech Intermediate Format (CIF) translator has also
been developed.
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Figure 7: Intra-ceU logic level tool

.3 Simulation ..........5 ........

Circuit simulation of different functional units of t]_e macr0ceH for 1_2 micron tedh-nol-ogy

using PSPICE is nearing completion. Logic level simulation of PACUBE macrocell for

GIPOP operations has been carried out using the PACUBE logic simulator.

6 Conclusion

in this paper novel methodologies have been proposed for designing silicon compilers for

synthesising supercomputing VLSI systems. The important criteria for such a silicon

compiler are integration of its software tools and the architectural considerations.
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Figure 8: Sub-program linker

7 Future Work

An algorithm for extracting the computational complexities of numeric algorithms in terms

of GIPOP functions is to be taken up. A methodology is to be developed for mapping the

communication graph of numeric algorithms on to the GIPOP processor array as shown in

Figure 2c. Reconfigurable fault-tolerant PACUBE arrays [2] has been developed and the

corresponding software tools to incorporate this into the silicon compiler has to be taken

up.
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