
Title Filtering data streams for entity-based continuous queries

Author(s) Cheng, R; Kao, B; Kwan, A; Prabhakar, S; Tu, Y

Citation IEEE Transactions On Knowledge And Data Engineering, 2010,
v. 22 n. 2, p. 234-248

Issued Date 2010

URL http://hdl.handle.net/10722/65445

Rights

©2010 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Filtering Data Streams for Entity-Based
Continuous Queries

Reynold Cheng, Member, IEEE, Ben C.M. Kao, Alan Kwan,

Sunil Prabhakar, and Yi-Cheng Tu, Member, IEEE

Abstract—The idea of allowing query users to relax their correctness requirements in order to improve performance of a data stream

management system (e.g., location-based services and sensor networks) has been recently studied. By exploiting the maximum error

(or tolerance) allowed in query answers, algorithms for reducing the use of system resources have been developed. In most of these

works, however, query tolerance is expressed as a numerical value, which may be difficult to specify. We observe that in many

situations, users may not be concerned with the actual value of an answer, but rather which object satisfies a query (e.g., “who is my

nearest neighbor?”). In particular, an entity-based query returns only the names of objects that satisfy the query. For these queries, it is

possible to specify a tolerance that is “nonvalue-based.” In this paper, we study fraction-based tolerance, a type of nonvalue-based

tolerance, where a user specifies the maximum fractions of a query answer that can be false positives and false negatives. We develop

fraction-based tolerance for two major classes of entity-based queries: 1) nonrank-based query (e.g., range queries) and 2) rank-based

query (e.g., k-nearest-neighbor queries). These definitions provide users with an alternative to specify the maximum tolerance allowed

in their answers. We further investigate how these definitions can be exploited in a distributed stream environment. We design adaptive

filter algorithms that allow updates be dropped conditionally at the data stream sources without affecting the overall query correctness.

Extensive experimental results show that our protocols reduce the use of network and energy resources significantly.

Index Terms—Data streams, continuous queries, adaptive filters, fraction-based tolerance.

Ç

1 INTRODUCTION

DUE to the rapid development of low-cost sensors and
networking technologies, stream applications have

attracted tremendous research interests lately. In particular,
long-standing continuous queries are common in a stream
environment for monitoring various network activities.
Some examples include intrusion detection over security-
sensitive regions; identification of Denial-of-Service (DOS)
attacks on the Internet [4]; road traffic monitoring; natural
habitat monitoring; network fault detection; e-mail spams
detection; and Web statistics collection.

In such applications, stream sources are installed to collect
and report the states of various entities. A large number of
sources (e.g., GPS-enabled devices, Internet hosts, and
wireless sensors) report their updated values (e.g., loca-
tions, TCP packets, and temperature values) continuously
to the processing server. These systems often have limited
bandwidth or energy resources. For example, in sensor
networks, sensing devices usually have scarce battery
power and communicate in a low-bandwidth environment.

Moreover, since the number of stream sources could be
large, a stream server could be crippled by the large volume
of data. This slows its response to standing queries that
require real-time processing [3]. It is thus important to
lower the message volume so that transmission cost as well
as server’s load can be reduced.

One direct way of lowering transmission cost is to drop
some of the data items generated from the stream sources.
The drawback is that the server may have to process queries
based on inaccurate data. However, if we can carefully select
the items to be dropped, the accuracy of a query answer may
only be affected slightly. Consider a transportation monitor-
ing system, where vehicles within a geographical region
(e.g., the city center) can be tracked [35]. For vehicles that are
stationary, or are located far away from the region, it may
not be necessary for these vehicles to always report their
positions to the system (in order to have high query
accuracy). More generally, for many standing queries, a
user may accept an answer with the maximum error allowed
(or tolerance) in exchange for lower resource consumption
and better timeliness in query processing. Other examples
for which controlled query errors are acceptable include
wide-area resource accounting and load balancing in
replicated servers. Intelligent protocols have been proposed
[28], [19] to wisely control when stream sources should
report updates. The goal of the protocols is to reduce
communication overhead, while at the same, time user-
specified tolerances are met. These protocols make use of
filter bounds—a system-specified range of values. A stream
source only reports an update if its value crosses the bound.

To illustrate the above concepts, let us consider a
continuous range query, a service commonly found in
location-based and sensor applications. In this query, a

234 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 2, FEBRUARY 2010

. R. Cheng, B.C.M. Kao, and A. Kwan are with the Department of Computer
Science, The University of Hong Kong, Pokfulam, Hong Kong.
E-mail: {ckcheng, kao, klkwan}@cs.hku.hk.

. S. Prabhakar is with the Department of Computer Science, Purdue
University, 250 N. University Street, West Lafayette, IN 47907.
E-mail: sunil@cs.purdue.edu.

. Y.-C. Tu is with the Department of Computer Science and Engineering,
University of South Florida, 4202 E. Fowler Ave., ENB118, Tampa, FL
33620. E-mail: ytu@cse.usf.edu.

Manuscript received; 13 Oct. 2007; revised 13 June 2008; accepted 5 Feb.
2009; published online 25 Feb. 2009.
Recommended for acceptance by S. Chakravarthy.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2007-10-0504.
Digital Object Identifier no. 10.1109/TKDE.2009.63.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

user is interested in stream values that fall within a region
called query range. This query can be used in an intelligent
transportation system, which monitors the movement of
GPS-enabled vehicles inside a geographical region for an
extensive amount of time. Another example is wildlife
tracking, which allows real-time analysis of the movement
of animals that gather around a landscape structure, e.g., a
water hole [20]. The animals, attached with location sensors,
can be monitored for a month’s time by a continuous range
query with the surrounding area of the water hole as a
query range. Fig. 1 illustrates a continuous range query over
locations of moving objects. A rectangle R (in solid lines) is
specified by the user. The query returns the identities of
objects whose locations are inside R (these objects are
colored in gray).

How would a user express a tolerance for this query?
One possibility is to let the user choose a numerical
tolerance, say �, and the system guarantees that the ID of
any object returned to the user must be located inside the
dashed-line rectangle (but not necessarily inside R). This
kind of tolerance, expressed as a numerical value, is often
assumed by filter-bound-based approximation techniques.
In Fig. 1, the filter bound is exactly the dashed-line rectangle
and installed in each moving object. This means that even if
an object is outside R, it needs not report its location to the
system as long as it does not cross the filter bound.

While numerical tolerance is useful, choosing an appro-
priate value of it may not be straightforward. In particular,
specifying a numerical tolerance requires some knowledge
about the relative distances or spread of the objects. For
instance, should � be 1 meter or 100 meters? In a sensor
network, various kinds of data such as humidity, tempera-
ture, and UV-index are collected [12]. If only a numerical
tolerance is allowed, the user may need to know a
reasonable range of error for each data type. Also, if a data
stream contains multidimensional data (e.g., location,
speed) or multimedia data (e.g., images), a numerical, or
value-based error, could be difficult to specify. A bad choice of
the numerical tolerance may significantly weaken the value
of a query. From Fig. 1, we can see that a large number of
objects whose locations are outside R (i.e., those colored in
black and white) are also included in the answer. To solve
this problem, a user has to be careful not to set � too large.
However, if � is too small, it may not be very useful for
improving the system performance. Thus, finding a reason-
able value of � can be difficult.

Alternatively, query tolerance can be expressed in terms
of a fraction rather than an absolute value. To illustrate,
Fig. 1 shows an object, colored in black, that is included in

the answer although the object is not inside R. This object is
called a false positive [27]. A fraction-based tolerance can then
be defined as the maximum fraction of query answers that
can be false positives. For example, if the fraction-based
tolerance is 0.1, then the black-colored object can still be
included in the answer, which contains nine other objects.
Another possibility to express the fraction-based tolerance
is through the use of false negatives [27], which specifies the
maximum fraction of objects that belong to the query result
but are not included in the answer returned to the user. An
example of a false negative is illustrated as a circle with a
thick boundary in Fig. 1; although it is inside R, it is not
included in the user’s result. Notice that the concepts of
false positives/negatives are based on precision and recall in
the IR literature [17].

The main goal of this paper is to study how filter bounds
can be deployed in data stream sources in order to exploit
fraction-based tolerance for different continuous query types.
Let us use the range query example in Fig. 1 again to illustrate
our solutions. Based on the maximum fraction of false
positives allowed, we first compute the number m of stream
sources that can be false positives. Then, m stream sources
that are currently satisfying the query are requested to stop
sending their data to the system. For the remaining streams
that satisfy the query, they are assigned with the filter bound
with the rangeR. Notice that regardless of whether the values
of them “shutdown” stream sources satisfy the range query,
the query answer is still acceptable within the tolerance.
Hence, as long as no updates are received by the system, the
query answer remains correct with respect to the tolerance.
Similarly, a maximum number of false negative stream
sources are stopped from reporting updates. Since only the
stream sources with the filter bound R send their updates
when their values cross the bound, our protocol saves
network and energy costs of data transmission.

Besides range query, we also study filter bound protocols
for a rank-based query, another important query type in
streaming applications. Contrast to a range query, a ranked-
based query returns IDs of objects based on their relative
rankings. For example, in a transportation system, a long-
standing k-nearest-neighbor (k-NN) query can be issued,
which continuously returns the IDs of k vehicles closest to a
given query point [18] for a long period of time. In a habitat
monitoring system, scientists may be interested in tracking
the k areas that yield the highest temperature, in which case
a top-k query can be used [12]. As another example, in
network traffic analysis, it is important to identify heavy
hitters [5], [15]. A heavy hitter is an IP source that delivers a
large number of packets to the monitored network, which is
also likely involved in DOS attacks. If the user is interested
in monitoring the k sources that yield the largest traffic
volume, then a continuous top-k query can be used. Notice
that both the range query (a nonrank-based query) and the
k-NN/top-k query (a rank-based query) return sets of object
IDs, rather than numerical values as answers. These entity-
based queries are good candidates for using fraction-based
tolerance, which does not use numerical values.

A few technical challenges need to be addressed for filter
bound protocols that exploit fraction-based tolerance. First,
as we will show, when value updates are received from
stream sources, the tolerance requirement can be violated

CHENG ET AL.: FILTERING DATA STREAMS FOR ENTITY-BASED CONTINUOUS QUERIES 235

Fig. 1. Illustrating query tolerances.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

(e.g., the fraction of false positives is larger than the allowed
threshold). We tackle this problem by carefully adjusting the
filter bounds of the stream sources so that query correctness
can be restored. Second, this correctness maintenance
process, which involves several message exchanges between
the server and the stream sources, can be expensive.
Moreover, some stream sources that are considered as false
positives/negatives and are not involved in data transmis-
sion may have to be “waken up” to send data in order to
maintain query correctness. We propose two new techni-
ques, namely, incremental deployment and immediate compen-
sation, in order to address these problems. The incremental
deployment technique reduces the chance of expensive error
fixing by only allowing a fraction of false positive/negative
stream sources to be “shut down.” The immediate compen-
sation method is designed to force an active data stream
source to stop transmitting data, in order to compensate the
“waking-up” of another stream source source.

While most previous works in filter bound algorithms
assume value-based queries (e.g., SUM and AVG), we study
the entity-based queries. We investigate the computation and
communication costs of our protocols. We also perform
simulations to examine the effectiveness of our protocols.
Although we assume one-dimensional data here, our
techniques can be generalized to higher dimension cases.
To summarize, our contributions are:

. Define fraction-based tolerance for rank-based and
nonrank-based queries,

. Present protocols that exploit fraction-based
tolerances,

. Derive the computation, communication, and energy
costs of the protocols, and

. Perform extensive experiments on the protocols,
using both real and synthetic data.

The rest of this paper is organized as follows: We discuss
related work in Section 2. Section 3 defines the semantics of
fraction-based tolerance constraints. Section 4 presents
protocols for maintaining filter constraints for fraction-based
tolerance of nonrank-based queries. Then, Section 5 explains
how the nonrank-based query protocol can be extended to
support rank-based query. In Section 6, we analyze the
resource consumption for our protocols and present our
experimental results. We conclude the paper in Section 7.

2 RELATED WORKS

Tolerance classification. Due to the high volume and
continuous nature of data streams, an important goal of a
stream management system is to conserve system resources
such as battery [13], memory [3], computation [22], [29], [16],
and communication costs [14], [28], [19]. Most of these works
reduce resource consumption by relaxing correctness re-
quirements. Typically, a user specifies a maximum tolerance,
and the tolerance is exploited by various techniques such as
approximate data structures, load shedding, filters, etc. The
tolerance is often assumed to be in the form of a numerical
value. Also, they are mostly applicable to value-based
queries only. Our work investigates the possibility of
exploiting fraction-based tolerance, a type of nonvalue-
based tolerance, for continuous entity-based queries.

Fig. 2 illustrates a classification of tolerances. The rank-
based tolerance, which describes the error in terms of the
distance from the desired order to the actual answer, is
studied in [7]. For example, given that the query returns the
object with the largest value, the user can specify that he can
accept an object which ranks the second or the third. We
extend the study of fraction-based tolerance maintenance
proposed in [7]. This tolerance, as shaded in Fig. 2, has a
broader application than rank-based tolerance, since it can
be applied to both rank- and nonrank-based queries.

Adaptive filters. The idea of using adaptive filters in
which filter bounds are installed to reduce communication
costs was first proposed in [28]. However, that paper only
considers value-based tolerance over aggregate queries
such as average value and minimum value. In [4], a similar
idea is applied to answer top-k queries for distributed
stream sources, but again, the tolerance is value-based. In
[19], Kalman Filters are used to exploit value-based
tolerance. The Kalman Filter is installed at every stream
source, and with its prediction techniques, it is shown to be
more effective than previous methods in conserving
communication costs. The extension of adaptive filters in
a sensor network is studied in [11]. Our work differs from
theirs in that we use adaptive filters to exploit nonvalue-
based tolerance. In addition, we study continuous k-NN
queries that are used in applications such as computer-
aided manufacturing and traffic monitoring [22]. Notice
that k-NN queries are more general than top-k queries
studied in [19]. Adaptive filters for k-NN queries are also
studied in [26], but the use of nonvalue-based tolerance is
again not considered.

Nonvalue-based tolerance. The classification of queries
into value-based and entity-based has been proposed in [6].
To our best knowledge, the use of nonvalue-based tolerance
for entity-based queries has not been well studied. In [34],
approximate answers for set-valued queries are proposed,
where a query answer contains a set of objects. An exact
answer E is approximated by two sets: a certain set C which
is a subset of E and a possible set P such that C [P is a
superset of E. This notion can be used to generate
approximate query results if a portion of the relational
database is unavailable, or if there is not enough time to
produce an exact answer. A rank precision model is
proposed in [21]: an answer a is called �-precise if the true
rank of a lies in the interval ½r� �; rþ ��, where r is the
rank of a informed to the user. In [10], precision and recall
are used as quality metric for approximating k-NN queries.
The issues of defining and exploiting fraction-based
tolerance in stream systems have only been addressed in
[7]. However, that work uses a preliminary protocol to

236 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 2, FEBRUARY 2010

Fig. 2. Classification of query tolerances.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

handle the tolerance. Here, we propose a more efficient
protocol, which performs better than that in [7]. We also
examine energy consumption issues, which have not been
studied before.

Other query evaluation techniques. The idea of viewing
a k-NN query as a range query was proposed in [18]. They
use a bound which encloses at least k objects so that
continuous k-NN queries can be answered efficiently. For
our filter bound protocol for continuous k-NN query, we
also convert the query to a range query.

In [25], a cost-based algorithm for MAX/MIN query was
proposed for sensor environments. The algorithm provides
a provably smallest cost in probing the data from the stream
sources. Their method is only used for “snapshot queries”
(i.e., queries that are executed once only), whereas our
approach (which uses adaptive filters) is designed for
continuous queries. We also study the effectiveness in
energy consumption, which is not studied in that paper.

Another cost-based approach for sensor network mon-
itoring was recently studied in [30]. Their energy consump-
tion model used for optimization is described in terms of
message cost. Specifically, for every x-byte message sent,
�þ �x units of energy will be consumed, where �x is the
energy spent for sending x bytes, and � is a per-message
overhead. In our paper, we further exploit the fact that
sensors can be in “sleep mode,” which consumes a minimal
amount of energy. By using fraction-based tolerance, we
show that it is possible to save energy by allowing a
controlled portion of stream sources to be in the sleep mode.

Load shedding. In this method, the database server
drops data tuples that arrived at the server site, in order to
lower the resource demand. Query processing also has to be
accomplished under some Quality-of-Service (QoS) require-
ments [31], [32], [8], [1]. Although filtering techniques also
attempt to reduce resource utilization by dropping tuples,
they are generally different from load shedding. For
filtering, the dropping of tuples occurs in stream sources
rather than in the server. Hence, filtering can save more
communication costs.

3 PROBLEM DEFINITION

We assume a distributed stream management model similar
to those described in [4], [28], [19]. The system consists of a
set S ¼ fS1; . . . ; Si; . . . ; Sng of n data stream sources with
stream source Si reporting a value vi 2 <. We assume that
stream values are updated at discrete time instants. Each
stream source may be associated with an adaptive filter that
specifies a constraint. With the filter mechanism, not all
updates are reported to the server. A filter constraint is a
closed interval ½li; ui�, where li; ui 2 <. Let v0i be the last
reported value from stream source Si. When the stream’s
value (vi) changes, the filter constraint is violated if either
1) v0i 2 ½li; ui� ^ vi 62 ½li; ui� or 2) v0i 62 ½li; ui� ^ vi 2 ½li; ui�. Only
when the constraint is violated will the updated value be
sent to the server. If no filter is installed at a stream source,
all updates from the stream source are reported.

Fig. 3 shows a general architecture of such systems. Each
stream source is equipped with a filter that is adaptive whose
parameters can be changed at any time by the processor. A
user submits her queries and tolerance requirements to the
central processor. The constraint assignment unit then
determines the relevant filter constraints to be installed in

each stream source. The query processing unit processes
user queries and updates their results if necessary. It also
receives updates from the stream sources. It communicates
with the constraint assignment unit, which decides if
constraints need to be revised for relevant filters.

3.1 Query Model

We are interested in entity-based queries—those that return
identifiers of objects as answers [6]. We classify entity-based
queries into rank-based queries and range queries.

1. Rank-based query. Given a number k 2 @ (k is
called the rank requirement), a rank-based query
returns IDs of objects that rank kth or above. Here,
we use k-NN queries to illustrate filter protocols,
since such queries are common in systems like
computer-aided manufacturing (CAM) in a product-
line monitoring system, mobile environments, and
network traffic monitoring [18], [22], [10]. A CAM,
for example, uses k-NN queries to discover similar
patterns over multidimensional data obtained from
sensors installed in production lines. A k-NN query
can also answer k-min and k-max queries. Notice
that a k-min (k-max) query is just a k-NN query by
setting the query point q to �1 (respectively, þ1).

2. A range query is specified by an interval ½l; u�.
Streams whose values fall within ½l; u� are returned
to the user. A range query is nonrank-based since the
decision of whether a stream contributes an answer
is independent of others.

Here, we use Q to denote an entity-based standing query
and AðtÞ to denote the answer set returned at time t. We use
jAðtÞj to denote the cardinality of AðtÞ.

A standing query Q is associated with a tolerance
constraint. We focus on the fraction-based tolerance, a kind
of nonvalue-based tolerance. The remaining of this section
presents and explains the definition of this tolerance.

3.2 Fraction-Based Tolerance

As explained, fraction-based tolerance adopts the concept of
false positives and negatives. This tolerance applies to all
entity-based queries, i.e., both rank- and nonrank-based
queries. An example of fraction-based tolerance for non-
rank-based queries is the reporting of alert messages about
network sources, which yield a traffic volume within an
abnormal range. For security purposes, it may be acceptable
that these messages are sent to the network administrator
even if the message is a false alarm. The network source
wrongly reported can then be regarded as a false positive. As
for rank-based queries, consider a CAM system [22], where

CHENG ET AL.: FILTERING DATA STREAMS FOR ENTITY-BASED CONTINUOUS QUERIES 237

Fig. 3. Data stream management system model.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

feedback information is returned from production lines to
adjust the parameters. In these systems, sensors are installed
to monitor the parts and discover the patterns of similar
features. Users issue the k-NN queries to mine multimedia
data streams (e.g., images) for unknown patterns, where the
features are multidimensional such as position, shape, size,
surface characterization, material properties, etc. Those
features are difficult to specify based on a numerical
tolerance (because the user may not have a sense of how
much the error value should be, as discussed in Section 1). A
fraction-based tolerance, on the other hand, is more intuitive
in quantifying the quality of results [10]. Based on the
fraction-based tolerance, the system will trigger an alert if
certain percentage of discrepancies in the result is reached.

Definition 1 (False positive and false negative). Given query
Q and answer set AðtÞ returned to the user, let eþðtÞ denote the
number of streams in AðtÞ that fail Q, and e�ðtÞ be the number
of streams that satisfy Q but are not in AðtÞ. The fraction of
false positives and the fraction of false negatives of Q at
time t, denoted by fþðtÞ and f�ðtÞ, respectively, are:

fþðtÞ ¼ eþðtÞ
jAðtÞj ; ð1Þ

f�ðtÞ ¼ e�ðtÞ
jAðtÞj � eþðtÞ þ e�ðtÞ : ð2Þ

Equation (1) describes the portion of objects returned to
the user that are not correct (false positives). Equation (2) is
essentially the fraction of objects in the true query answer
that are not returned to the user (i.e., false negatives). The
denominator of (2) (i.e., jAðtÞj � eþðtÞ þ e�ðtÞ) is the size of
the true answer set, where the false positives that do not
satisfy Q are excluded and false negatives that satisfy Q but
not in AðtÞ are included. Fig. 4 illustrates the relationship
among these quantities. Notice that the notions of false
positives/negatives are based on the concept of precision
and recall [17]. In particular, fþðtÞ ¼ 1� precision, and our
goal can be viewed as achieving the minimum precision
required for query answers. Similarly, f�ðtÞ ¼ 1� recall.
Definition 2 (Fraction-based Tolerance). Given query Q,

answer set AðtÞ, maximum false positive tolerance �þ, and
maximum false negative tolerance ��, the answer set AðtÞ is
correct w.r.t. �þ and �� iff fþðtÞ � �þ and f�ðtÞ � ��.

The parameters �þ and �� are user-specified. The system
has to guarantee that the fraction-based tolerances are met.
We assume that �þ and �� are both smaller than 0.5, because in
most scenarios, users are not interested in results with more
wrong answers than correct ones. This assumption is also
required for guaranteeing the correctness of our protocols.

Let emaxþðtÞ be the maximum number of answers that
can be incorrect in AðtÞ and emax�ðtÞ be the maximum
number of stream sources that satisfy the query but are
excluded from AðtÞ. From (1) and (2), we have

fþðtÞ � e
maxþðtÞ
jAðtÞj ¼ �

þ; ð3Þ

f�ðtÞ � emax�ðtÞ
jAðtÞj � emaxþðtÞ ¼ �

�: ð4Þ

More about fraction-based tolerant k-NN queries. Note
that each k-NN query has only k correct answers. Hence, (2)
becomes

f�ðtÞ ¼ e
�ðtÞ
k

; ð5Þ

which means that at any time t, the number of false negatives

(e�ðtÞ) cannot exceed k. Moreover, the number of correct

objects in the answer returned to the user, i.e., jAðtÞj � eþðtÞ,
must not be larger than k. Equivalently, 1� eþðtÞ

jAðtÞj � k
jAðtÞj . Since

eþðtÞ
jAðtÞj � �þ (1), we get

1� �þ � 1� eþðtÞ
jAðtÞj �

k

jAðtÞj ; ð6Þ

jAðtÞj � k

1� �þ ; ð7Þ

jAðtÞj � 2k: ð8Þ

Equation (8) is obtained by assuming that �þ < 0:5. Hence,
the size of the answer set may not be equal to k. For
example, if the 10 nearest neighbors are queried with a
fraction-based tolerance �þ ¼ 0:1, 11 streams can be re-
turned, where at most one of them is not correct. (That is, all
correct ones are returned.) In fact, the answer set size can be
controlled by �þ and is upper bounded by 2k. Finally, since
the true answer size is always k, we have

jAðtÞj � kð1� ��Þ; ð9Þ

jAðtÞj � k
2
; ð10Þ

when �� is less than 0.5. Hence, a k-NN query answer has a
size between k

2 and 2k. This property will be used in the
design of our protocols.

3.3 Maintaining Query Correctness

Our protocols translate tolerance constraints into filter
constraints installed in the data stream sources. As long as
the data value of a stream does not violate the filter
constraint, no update is sent from the stream source to the
server. When it is necessary that an update be sent to the
server, the server may need to reconfigure the filter
constraints. We call such reconfiguration constraint resolution.
Similar to [4], there are two correctness requirements for our
protocols:

Correctness requirement 1. At every point in time, if no
resolution is required, then the results of all running

238 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 2, FEBRUARY 2010

Fig. 4. Illustrating AðtÞ, eþðtÞ, and e�ðtÞ.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

continuous queries remain valid within their tolerance
constraints.

Correctness requirement 2. Immediately after filter
resolution is completed, the tolerance of a query is satisfied
assuming that stream values do not change during resolution.

Next, let us study how fraction-based tolerance can be
exploited for nonrank-based queries.

4 NONRANK-BASED QUERIES

We now study how to exploit fraction-based tolerance for a
range query—a nonrank-based query. Consider a protocol
that uses no tolerance: each stream filter is assigned the
constraint ½l; u� at the beginning. Any violation in a filter has
to be reported to the server, and query answers are updated
correspondingly. Correctness is guaranteed, since essen-
tially, each filter evaluates the range query on the stream it
is responsible for. We call this algorithm zero-tolerance
protocol for nonrank-based query (ZT-NRP).

Although ZT-NRP can reduce communication costs, it
may generate unnecessary updates. Consider Fig. 1 again,
where the maximum allowed fraction of false positives is
0.1. Suppose the black-colored object, previously inside the
range R, has just moved outside. This triggers an update by
ZT-NRP. This is not needed, since the black object is the
only false positive out of the 10 answer objects. It can thus
be included in the answer.

To solve the above problem, we propose a fraction-
tolerance protocol for nonrank-based query (or FT-NRP in
short). Section 4.1 describes the framework of FT-NRP.
Section 4.2 investigates how tolerance can be restored if it is
violated (by the arrival of data updates). We propose an
enhanced protocol in Section 4.3. Section 4.4 extends FT-

NRP to handle multiple queries.

4.1 The FT-NRP Framework

The FT-NRP protocol ensures that at any time during query
execution, no more than a fraction �þ of query answers are
false positives, and no more than a fraction �� of results are
false negatives. As shown in Fig. 5, FT-NRP consists of two
phases: Initialization and Maintenance of filter constraints.

Initialization. To ensure that no more than a fraction �þ

of the answer set (i.e., AðtÞ) can be wrong at any time t, the

server first captures the states of the streams at time t0
(Step 1). Then, Aðt0Þ and Y ðt0Þ; the set of objects which do

not belong to Aðt0Þ, are evaluated (Steps 2 and 3). Next, the

algorithm broadcasts a filter bound ½l; u� to all the stream

sources involved (Step 4). A subroutine called calError is

invoked in Step 5, which computes the maximum number

of false positives (emaxþ) and false negatives (emax�)

allowed, without violating query correctness (refer to the

bottom of Fig. 5). According to (3), emaxþðt0Þ ¼ jAðt0Þj � �þ.

Also, emax�ðt0Þ ¼ jAðt0Þj �
�ð1��þÞ
1��� (See the footnote.1)

Next, let nþðtÞ be the number of stream sources allocated
the false positive filter constraint (denoted by ½�1;1�) at
time t. Stream sources equipped with these filters do not

report their values at all. Step 6 computes the value of nþðtÞ,
which is a fraction ð1� !Þ of the maximum false positives
allowed (with ! 2 ½0; 1�). Out of the jAðt0Þj answers that
satisfy the range query, we assign the ½�1;1� filter
constraints to nþðt0Þ of them (Step 7). Since nþðtÞ does not
exceed the maximum false positives allowed, if no ½�1;1�
stream sources reply, the false positive requirement is met,
i.e., fþðtÞ � �þ. Moreover, as nþðtÞ stream sources are “shut
down” from emitting updates, the amount of communica-
tion is reduced. As illustrated in our experimental results,
this approach can also save battery power in a sensor
network, since the sensors can be “shut down” and
consume less energy than active sensors.

In Step 6, ! is a system parameter that we call the
deployment fraction. Intuitively, ! controls the number of false
positive filters assigned to stream sources in the initialization
phase. Why don’t we assign these filters to all the emaxþðt0Þ
and emax�ðt0Þ stream sources in Step 7(I)? The main reason is
to provide more flexibility in choosing the appropriate
number of stream sources to shut down. In particular, we
may not know in advance which subset of the streams
contributing to the answer Aðt0Þ would be better associated
with the ½�1;1� filters during the initialization phase. If a
stream source is wrongly assigned a ½�1;1� filter (e.g., the
values generated from that stream are constant), this filter is
“wasted” since it does not save any potential update that
crosses the ½l; u� bounds. On the other hand, for a stream
whose value changes around the ½l; u� bounds, it is better to
associate this stream source with a false positive/negative
filter. The maintenance phase, explained next, allocates
unused filters generated in the initialization phase to stream

CHENG ET AL.: FILTERING DATA STREAMS FOR ENTITY-BASED CONTINUOUS QUERIES 239

Fig. 5. Maintaining fraction-based tolerance at the server.

1. From (2), we have �� ¼ emax�ðt0Þ
jAðt0Þj�emaxþðt0Þþemax�ðt0Þ . By substituting

emaxþðt0Þ ¼ �þjAðt0Þj (3) into �þ, we get emax�ðt0Þ ¼ jAðt0Þj �
�ð1��þÞ
1��� .

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

sources only when they signal to the system that their values
have crossed the filter bounds. We term this method, which
gradually allocates false positive/negative filters to the
stream sources, as incremental deployment. We will also
explain later how incremental deployment can be beneficial
to FT-NRP. We will also illustrate in the experimental results
that it is often better to have a nonzero value of !, rather than
deploying the filters all at once.

False negative tolerance can be exploited in a similar
way. Let n�ðtÞ be the number of stream sources allocated
the false negative filter constraint (denoted by ½1;1�) at time
t. Recall that jY ðt0Þj ¼ jS �Aðt0Þj streams do not satisfy Q.
By assigning ½1;1� filters to n�ðt0Þ of them, these stream
sources are “turned off.” Since n�ðtÞ ¼ ð1� !Þemax�ðtÞ (i.e.,
a fraction of the maximum number of false negative filters),
if no data are received from Y ðt0Þ, we are guaranteed at any
time t; f�ðtÞ � �� (Steps 8-9). Thus, after Initialization
Phase, correctness requirement 1 is satisfied. That is, if no
update is received at time t; fþðtÞ � �þ and f�ðtÞ � ��.

Filter selection. To choose which stream sources are
assigned the false positive/negative filters in Steps 7(I) and
9(I). We propose two heuristics: 1) random—stream sources
are randomly selected and 2) boundary-nearest—only stream
sources with values closest to the user-defined query range
½l; u� are considered. While random requires only Oð1Þ time,
boundary-nearest is more expensive—it requires sorting the
distance of the stream value from the query range in
Oðn logðnÞÞ times. For boundary-nearest, however, objects
closer to the query boundary have a higher chance for being
assigned the false positive/negative filter constraints. These
objects are also the ones that are likely to cross the
boundaries and trigger updates. The assignment of filters
to these objects can thus increase the chance that updates
are dropped by the filters, resulting in better performance.

Maintenance. We now discuss how updates generated
from stream sources with ½l; u� filters should be managed.
Assume that the server receives an updated value vi from Si
at time tu. Immediately, prior to receiving vi, according to
correctness 1, the following must hold (using (3) and (4)):

fþðtÞ � e
maxþðtuÞ
jAðtuÞj

� �þ; ð11Þ

f�ðtÞ � emax�ðtuÞ
jAðtuÞj � emaxþðtuÞ

� ��: ð12Þ

Let t be the current time instant with t � tu. There are two
different cases of updates to consider.

Case 1. vi 2 ½l; u�. This means that Si, previously not in

the result, is now an answer. We handle this by inserting

Si into AðtuÞ (Step 1(I)). The number of false positives,

eþðtÞ, is unchanged. As jAðtÞj becomes jAðtuÞj þ 1; fþðtÞ
cannot be more than emaxþðtuÞ

jAðtuÞjþ1 (3), and is less than �þ (11).

Since e�ðtÞ is also unchanged, (12) also holds. Thus,

correctness 2 is upheld.
The rest of Step 1 uses the false positive filters not

deployed in initialization. Specifically, Step 1(II) invokes
calError to update emaxþ. Step 1(III)(a) calculates the
quota of ½�1;1� filters that can be allocated to stream
sources with ½l; u� filters. If this value (equal to emaxþ � nþ) is

larger than zero, we assign ½�1;1� to Si. We choose Si with
the assumption that if Si crosses the ½l; u� bound now, it is
likely to cross the same bound again later. Thus, any future
updates generated from Si can be filtered. Step 1(III)(b) then
increments the number of false positive filters allocated.

Case 2. vvi 62 ½l; u�. Stream Si satisfied Q immediately after
½l; u� was installed to its filter, but Si is no longer the answer
to Q at time tu. Step 2(I) removes this “bad answer” from
AðtuÞ so that the size of AðtuÞ is reduced by one. Step 2(II)
then updates emaxþ and emax�. We check in Step 2(III)
whether one of the constraints in (1) and (2) are violated. If
so, correctness is violated, and fixError will be invoked
(Step 2(III)(a)). Now, let tc be the time when either the false
positive or negative fraction (i.e., fþ and f�) attains its
maximum value without violating query tolerance. Thus,
immediately before fixError is run, we have

jAðtÞj ¼ jAðtcÞj � 1: ð13Þ

Since fixError can be expensive, its execution should
be avoided if possible. Recall that our protocol uses the
incremental deployment technique—that is, only some false
positive/negative filters are deployed initially. Intuitively,
the correctness is “stronger” than required by the tolerance,
and thus, reduces the chance for fixError to be called.

If fixError is not invoked, we check whether there are
still some false negative filters not assigned by incremental
deployment yet (Step 2(IV)). If so, we assign the ½1;1�
filter to stream source Si. This assignment does not violate
the false negative requirements, since there are false
negative filters not allocated. We assume that Si is likely
to have values crossing the ½l; u� bound in the near future, so
that the ½1;1� filter can suppress this update.

4.2 Error Fixing

The fixError routine restores query correctness by
replacing the false positive/negative filters with ½l; u� filters.
Recall from Step 2 in Fig. 5 that the violation of correctness
requirements is due to the removal of an answer (in
Step 2(I)). Let us investigate how fixError tackles this
problem. For the purpose of explanation, we classify the
streams into four disjoint sets, based on the status of filters,
and whether they belong to the query answer:

. A: Stream sources in AðtÞ with ½l; u� filter,

. B: Stream sources in AðtÞ with ½�1;1� filter,

. C: Stream sources not in answer set (S �AðtÞ) but with
½l; u� filter, where S is the set of all stream sources, and

. D: Stream sources in S �AðtÞ with ½1;1� filter.

Notice that B is the set of stream sources installed with
false positive filters, and D contains all stream sources with
false negative filters. The legend on the top of Fig. 6 illustrates
these four sets of stream sources. The shaded boxes represent
sets of stream sources with the ½l; u� filters, while the white
ones depict those with ½�1;1� or ½1;1� filters.

Recall that fixError is invoked because a stream Si
returns an update which is outside the ½l; u� bound. As
shown in Fig. 7, when nþ > 0, a stream source Sy with a
false positive filter (i.e., Set B) is requested to send its value
(Step 1(I)). There are two cases, depending on whether
vy 2 ½l; u�.

240 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 2, FEBRUARY 2010

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

Case 1. vy 2 ½l; u�. This means that Sy is currently a true

answer. We install a ½l; u� filter to Sy. Hence, vy 2 ½l; u� when

no update is received from it (Step (II)(a)). The left side of

Fig. 6a illustrates this, where solid lines represent the

change of the sets for Si and Sy. Notice that as Sy has been

assigned a false positive filter, vy has already been in AðtuÞ,
and so, jAðtÞj remains unchanged (i.e., equal to jAðtcÞj � 1

according to (13)). Moreover, Sy is no longer a false positive,

and so, eþðtÞ is decremented. Thus, fþðtÞ is now less than
emaxþðtcÞ�1
jAðtcÞj�1 , which is also less than fþðtcÞ, meeting the false

positive constraint. The false negative constraint is also

satisfied: by (4), f�ðtÞ � emax�ðtÞ
jAðtÞj�emaxþðtÞ , or emax�ðtcÞ

ðjAðtcÞj�1Þ�ðemaxþðtcÞ�1Þ ,

which is less than ��.

Case 2. vy 62 ½l; u�. Sy is now a true negative, and so, we

remove Sy from AðtÞ (13). Then, jAðtÞj becomes jAðtcÞj � 2

(Step 1(III)). Since eþðtÞ is also decremented, fþðtÞ is less than
emaxþðtcÞ�1
jAðtcÞj�2 . As �þ � 0:5, e

maxþðtcÞ�1
jAðtcÞj�2 cannot be larger than emaxþðtcÞ

jAðtcÞj ,

and is less than �þ.

However, fmax�ðtÞ is at most emax�ðtcÞ
ðjAðtcÞj�2Þ�ðemaxþðtcÞ�1Þ , and can

be more than ��. To remedy this, we pick one stream source

with a false negative filter (say Sz) from D (Step 2(I)). If

vz 2 ½l; u�, we include Sz in the answer (Step 2(II)). We also

install the ½l; u� filter toSz (Step 2 (III)). Now jAðtÞj is increased

to jAðtcÞj � 1, and f�ðtÞ is at most emax�ðtcÞ�1
ðjAðtcÞj�1Þ�ðemaxþðtcÞ�1Þ , which

is smaller than ��. Further, fþðtÞ is at most e
maxþðtcÞ�1
jAðtcÞj�1 , which is

less than �þ. Thus, correctness 2 is met, as shown by the solid

lines in Fig. 6b.

On the other hand, if vz 62 ½l; u�, jAðtÞj and eþðtÞ remain

unchanged, and thus, the false positive constraint is still

satisfied. Since e�ðtÞ is at most emax�ðtcÞ � 1, f�ðtÞ is at most
emax�ðtcÞ�1

ðjAðtcÞj�2Þ�emaxþðtcÞ , which is smaller than �� because �� � 0:5.

By assigning the constraint ½l; u� to the filter of Sz,

correctness 2 is also met. This case is shown in Fig. 6c.
Notice that fixError involves the sending of three

messages in the worst case. It also reduces the number of
false positive/negative filters. By preserving some of these
filters in the initialization phase and deploying them
carefully (i.e., using incremental deployment), the penalty

due to the execution of fixError can be reduced, as shown
by our experiments.

4.3 Immediate Compensation

A problem of fixError is that the false positive/negative
filters deployed to the stream sources will be replaced by
the ½l; u� filters. This causes more communication, since an
½l; u� filter allows updates to be generated. To alleviate this,
we introduce the Immediate Compensation, which attempts to
maintain the number of false positive/negative filters.

Let us examine Fig. 6a again, where the original
fixError protocol (on the left) puts Sy into the set A by
giving it an ½l; u� bound, while Si is removed from the
answer, i.e., put in set C. As a result, the false positive filter
associated with Sy is “lost.” Our new approach avoids this
by treating Si as a false positive instead (shown in dotted
lines on the right). This is possible because although Si is no
longer a valid answer, we can put it into any of the sets B,
C, and D. More importantly, by putting Si into set B and Sy
into set A, the “loss” of Si from the answer is immediately
compensated by the presence of Sy. Thus, correctness is
restored, and the number of false positive filters remain the
same as before.

The same principle can be applied to the scenario in
Fig. 6b, where Sy is not a query answer. Instead of putting
Si into B and Sy into C (as in the original fixError), we
can do the following (shown in dotted lines):

1. Put Si into B by associating Si with the ½�1;1�
filter.

2. Put Sy into D by associating Sy with the ½1;1� filter.

From Fig. 6b, Sy is replaced by Si. Also, the displacement
of Sz from D is compensated by the arrival of Sy. Thus, the
sizes of all the four sets remain the same, and correctness is
fixed. Also, no false positive or false negative filters are
compromised after the fixing procedure.

To conclude, the new fixError can retain the false
positive/negative filters in cases Figs. 6a and 6b, but not in
Fig. 6c. Thus, in most situations, the performance of the
protocol will not deteriorate due to error fixing. The extra
cost of immediate compensation compared to the old
fixError is that a message is sent to Si, for converting
its filter from ½l; u� to ½�1;1�. Our experiments show that
this is worthwhile.

CHENG ET AL.: FILTERING DATA STREAMS FOR ENTITY-BASED CONTINUOUS QUERIES 241

Fig. 6. Cases handled by fixError.
Fig. 7. The fixError routine (at the server side).

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

4.4 Multiple Queries

Our single-query protocol can be extended to handle
situations where more than one continuous query are
executed at the same time. First, we apply the initialization
step of FT-NRP to each query involved. The filter bounds
computed for each query are sent to the stream sources. If
there are m concurrent queries, each stream source will be
associated with m filter bounds. Second, during main-
tenance, the value of a stream is checked against the m filter
bounds. The new value will only be sent to the server if it
violates any of these bounds. Since the update is only sent
once even if the value crosses the boundaries of one or more
filter bounds, some communication overhead can be saved.

5 RANK-BASED QUERIES

A k-NN query can be viewed as a range query: if we know
the bound R that encloses the kth nearest neighbor of the
query point q, then any objects with values located within R
will be an answer to the k-NN query.

We can use this idea to design a filter scheme for k-NN
query (with zero tolerance). We call this protocol ZT-RP.
During initialization, it computes R, and then, distributes R
to all the stream filters. If no responses are received from the
streams, the server is assured that all k objects are within R,
and they are still the k nearest neighbors of q. Since no error
is allowed, if any object enters or leaves R, we have to
recompute R so that R still encloses the k nearest objects. In
addition, the new R has to be announced to every stream.

The main drawback of this simple protocol is that it is
sensitive to an object’s value crossing R. When this happens,
R has to be recomputed and announced to every stream! Let
us investigate how this problem can be alleviated.

5.1 Using FT-NRP for k-NN Query

We just discussed how to view a k-NN query as a range
query for the purpose of constraint deployment. Recall that
the definition of fraction-based tolerance is the same for
k-NN query and range query. To develop a fraction-based
tolerance protocol for a k-NN query, one may consider
transforming a k-NN query to a range query, and then,
directly apply FT-NRP. Unfortunately, this is incorrect. As
we show shortly, the �þ and �� parameters of a k-NN have
to be first converted to two other values.

Specifically, let �þ and �� be the maximum false positive
and negative tolerance values used by FT-NRP, in order to
answer a k-NN query with tolerance �þ and ��. Let R be the
smallest region that initially bounds the kth-ranked object,
and thus, contains k objects. Similar to the initialization of
FT-NRP, for objects with values in R, we assign false
positive filters to k�þ stream sources; for stream sources
with values outside R, we apply false negative filters to
k�� stream sources. Other stream sources use R as the filter
bounds. Let us examine how �þ and �� should be set.

Meeting false positive requirement. Suppose R encloses
the k nearest objects of q. Let S1 be part of the answer set,
and v01 2 R is the value of S1 last reported to the server.
Hence, S1 is one of the k nearest neighbors. If S1 is
associated with a false positive filter, the new value of S1,
i.e., v1, may not be located within R. Consider the situation
shown in Fig. 8. Suppose there exists a stream S2 such that
v1 < v2. Then, S1 is no longer a correct answer, since S2 now
ranks higher and it pushes the rank of S1 to kþ 1. Therefore,

S1 becomes a false positive. Since at most jAðtÞj�þ stream
sources are assigned with false positive filters, at most
jAðtÞj�þ false positives may be produced in this way.

Another kind of false positive is caused by false negative
filters. Suppose S4, being ranked kth and lies within R, is an
answer. Also assume that S3 has a false negative filter, whose
last reported value v03 is outside R. Fig. 8 shows that when
the new value of S3, i.e., v3, is inside R, the rank of S3 is k or
higher. The rank of S4 is demoted to kþ 1, and thus, S4

becomes a false positive. Since false negative filters can be
assigned to at most k�� stream sources (5), at most k�� false
positives are created.

The sum of the false positives generated by these two
scenarios is jAðtÞj�þ þ k��, where jAðtÞj < k

1��þ (7). Also,
there cannot be more than jAðtÞj�þ false positives, with a
minimum value of kð1� ��Þ�þ (9). Therefore,

�� � �þ

�þ � 1
þ ð1� ��Þ�þ: ð14Þ

Meeting false negative requirement. Again, there are
two types of false negatives for a k-NN query. As shown in
Fig. 8, the first type of false negatives is caused by streams
like S3, whose last reported value v03 is not within R, and is
assigned with false negative filters. Later, its new value v3 is
within R and its rank is raised to k or higher. The server
does not know this, and so, S3 is a false negative. The
number of false negatives is at most k��, the maximum
number of false negative filters. The second type is caused
by stream sources with false positive filters like S1. Again,
S1 was among the top-k objects since its last reported value
v01 is within R. However, its new value v1 is less than v2, so
S2 ranks k or higher (without notifying the server). The
maximum number of this kind of false negatives is thus
jAðtÞj�þ, the maximum number of false positive filters.
Since the maximum number of false negatives for k-NN
query is given by k��, the sum of the two kinds of false
negatives k�� and jAðtÞj�þ must be less than k��. Equation
(7) simplifies this to

�� � �þ

�þ � 1
þ ��: ð15Þ

Guaranteeing correctness. To make sure that both false
positives and false negatives are met, we combine (14) and
(15) so that the following is achieved:

�� � �þ

�þ � 1
þminðð1� ��Þ�þ; ��Þ: ð16Þ

Essentially, given the tolerance �þ and ��, the values of �þ

and �� must be configured to satisfy (16). To maximize the
benefit, �þ and �� should set as

�� ¼ �þ

�þ � 1
þminðð1� ��Þ�þ; ��Þ: ð17Þ

242 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 2, FEBRUARY 2010

Fig. 8. False positives and false negatives for a k-NN query.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

5.2 Fraction-Based Tolerant k-NN Query

Once the values of �þ and �� are correctly set, we can
extend FT-NRP to exploit the fraction-based tolerance of
k-NN queries. The corresponding protocol, called FT-RP,
differs from FT-NRP in two aspects:

1. Unlike a range query with a fixed bound ½l; u�, the
“range” of k-NN query is defined by R—the tightest
bound that contains the kth nearest neighbor. Thus,
FT-RP first finds R before running the initialization
phase of FT-NRP. Notice that the filter constraint R
so calculated will not be changed even when R
contains more or less than k objects—except when
the conditions described next are met. Essentially,
we use R only as an estimate of the k nearest
neighbors.

2. A requirement for the answer AðtÞ of a rank-based
query is that kð1� ��Þ � jAðtÞj � k

1��þ ((7) and (9)).
Initially, jAðtÞj ¼ k, but as time goes by, the number
of items in AðtÞ increases (decreases) when an object
enters (exits) R. Intuitively, when jAðtÞj > k

1��þ , there
are too many objects in R, i.e., R is “too loose.”
Similarly, when jAðtÞj � kð1� ��Þ, too few objects
are in R, i.e., R is “too tight.” In either case, R is no
longer an appropriate bound. We need to find a
bound that encloses the new k-nearest neighbors.

Thus, the advantage of FT-RP over ZT-RP is that it does
not recompute and broadcast R when an object enters or
leaves R, but only when AðtÞ drops below kð1� ��Þ or
exceeds k

1��þ .

6 PERFORMANCE EVALUATION

We now examine the performance of our protocols.
Sections 6.1, 6.2, and 6.3 analyze the computation, commu-
nication, and power consumption of ZT-NRP and FT-NRP,
respectively. Section 6.4 presents the experimental setup,
and Section 6.5 discusses the results.

6.1 Computational Complexity

Let us first consider the computation cost of the processing
server in ZT-NRP. In the beginning, ZT-NRP just needs to
send the ½l; u� bound to the stream sources. Any update
received from the stream sources will be used to refresh the
query answer. Thus, both initialization and maintenance
need Oð1Þ time.

For FT-NRP, during initialization, Steps 1-3 require a
complexity of OðnÞ. Steps 4, 5, 6, and 8 cost Oð1Þ. If random
selection is used, Steps 7 and 9 require a total of
Oðð1� !Þðemaxþ þ emax�ÞÞ. Thus, initialization requires
OðnÞ. If nearest-boundary selection is used, an additional
sorting cost ofOðn logðnÞÞ is required, and initialization costs
Oðn logðnÞÞ. For maintenance, notice that the complexity of
fixError is Oð1Þ (Fig. 7). Thus, the maintenance phase
requires only Oð1Þ for every update received by the server.

6.2 Communication Cost Model

Our distributed communication model is similar to the one
described in [26], where a server can broadcast its messages
to the stream sources. These messages are classified into
three categories.

. Broadcast cost(Cb) for broadcasting a message from
the server to all stream sources.

. Downlink cost(Cd) for sending a downlink message
from the server to a stream source.

. Uplink cost(Cu) for sending an uplink message from
a stream source to the server.

This cost model can be used to characterize the type of

resources studied. For example, the cost can be the network

bandwidth or energy consumed by substituting appropriate

values. In Section 6.3, we discuss how power costs can be

considered based on this model.
For ZT-NRP, the initialization process needs a cost of Cb

for broadcasting the ½l; u� bound to all stream sources.

During maintenance, a cost of Cu is needed for a stream

source to report its value. As for FT-NRP, during initializa-

tion, all stream sources send their initial values in response

to the broadcast request from the server (Step 1). Therefore,

a cost of Cb þ n Cu is needed. Then, the server broadcasts a

message which consists of the ½l; u� bound to every stream

source, with a cost of Cb. After the initial set of false

positives and negatives is determined, the FT-NRP needs a

cost of ð1� !Þðemaxþ þ emax�ÞCd to deploy the false positive

and false negative filters to stream sources (Steps 6-9). Thus,

the communication cost during initialization is

2Cb þ nCu þ ð1� !Þðemaxþ þ emax�ÞCd; ð18Þ

i.e., a complexity of OðnÞ.
During maintenance, each update from a stream source

will incur a cost of Cu. If resolution takes place, it requires a

cost of Cd þ Cu for requesting a value from a false positive

stream source (Sy). If the protocol further requires a false

negative stream source Sz be interrogated, a cost of ðCd þ
CuÞ is needed. Therefore, the cost of maintenance is at most

3Cu þ 2Cd: ð19Þ

For immediate compensation, an extra message for updat-

ing the filter of Si may be needed, and so in the worst case,

its cost is

3ðCu þ CdÞ: ð20Þ

Thus, maintenance of FT-NRP requires a communication

cost of Oð1Þ. Although immediate compensation is more

expensive, our experiments show that this extra cost is worth

paying. If we substitute the values ofCb; Cd, andCu by 1, then

the above analysis will yield the total number of messages

used. Next, we study the energy consumption costs.

6.3 Power Consumption of Sensor Networks

In many data stream applications, battery power is a

precious resource. For example, in wireless sensor networks

(WSNs), sensors are only equipped with a limited power

source (e.g., 0.5 Ah, 1.2 V) [2]. Therefore, it is important to

preserve energy resources for the sensors in these systems.
Let us now study the energy requirements of sensors in

FT-NRP and ZT-NRP. Assume that each sensor is a data

stream source, each of which can be installed with a filter.

According to [24], there are two types of energy consump-

tion due to data communication.

CHENG ET AL.: FILTERING DATA STREAMS FOR ENTITY-BASED CONTINUOUS QUERIES 243

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

. Transmission power(Pt) for sending an uplink
message to the server.

. Reception power(Pr) for receiving a downlink
message from the server at the stream source.

The amount of energy consumed due to communication
can now be deduced by using the communication cost
model described in the previous section. In particular, the
broadcast cost Cb becomes nPr, since all the n sensors will
receive a message from the server. We also equate the
downlink cost (Cd) to Pr, and the uplink cost (CuÞ to Pt. By
substituting these values into the results obtained in
Section 6.2, we can see that ZT-NRP requires an initializa-
tion and maintenance cost of nPr and Pt, respectively. For
FT-NRP, we have:

. Initialization: nPt þ ð2nþ ð1� !Þðemaxþ þ emax�ÞÞPr.

. Maintenance (without immediate compensation):
3Pt þ 2Pr.

. Maintenance (with immediate compensation):
3ðPt þ PrÞ.

In addition to communication, a sensor needs to collect
information from the external environment. We use
sensing power (Ps) to denote the amount of energy
required for a sensor to acquire a data value (e.g.,
temperature, location). We assume that unless a sensor is
installed with a false positive/negative filter, it collects
data at a fixed periodicity (or duty cycle). At any instant
of time during maintenance, for ZT-NRP, there are
n stream sources installed with ½l; u� filters. Thus, the total
amount of sensing power consumed in the maintenance
phase is nPs. On the other hand, FT-NRP only has
ðjAðtÞj � nþÞ þ ðjS �AðtÞj � n�Þ stream sources installed
with ½l; u� filters, and so, the sensing power required is
ððjAðtÞj � nþÞ þ ðjS �AðtÞj � n�ÞÞ � Ps. The higher the
number of false positive filters (nþ) or false negative
filters (n�), the more sensing energy is saved.

In the rest of this section, we present the experimental
results for the network bandwidth and power consumption
performance of our protocols.

6.4 Experimental Setup

We use CSIM 19 [33] to simulate the environment
illustrated in Fig. 3. We test the performance based on both
real and synthetic data.

For real data, we choose the TCP traces described in
[23]. Our experiment models a remote network monitor-
ing application, where a central console is used to
monitor a network composed of 800 subnets. The data
set contains 30 days of wide-area traces of TCP connec-
tions, capturing 606,497 connections. Each subnet repre-
sents a stream source. The “number of bytes sent” field in
each packet trace is used as a data value. We assume that
an agent software that implements our filters is installed
at each subnet router. We consider two kinds of queries:
a top-k query and a range query. These two queries are
important to the network monitoring domain. Specifically,
the heavy hitter analysis is often used to continuously
discover an IP-source (called “heavy hitter”) that delivers
the largest number of packets to the monitored network,
which is also likely involved in DOS attacks [5], [15]. If
the user only needs to know the top-k heavy hitters, then

this problem can be modeled as a top-k query, which
reports continuously the subnets with the k highest traffic
volume [4]. The range query can be used to classify
subnets with different ranges of traffic volume. It also
captures IP sources that may participate in a DOS attack,
if the amount of traffic is identified to be within a
“dangerous” range. Here, we assume k ¼ 60, and a query
range of [200, 350].

We also perform testing on synthetic data, where
5,000 stream sources are generated. The time between each
data item generated follows an exponential distribution
with a mean of 20 time units. The values of a data stream
item is uniformly distributed in [0, 1,000]. When a new data
value is generated, its difference from the previous value
follows a normal distribution with a mean of zero and a
variance of 60 units. For range queries, we assume that the
default query range is [400, 600]. For rank-based queries, we
simulate the k-NN queries with k equal to 60. These
parameter values are tuned in such a way that interesting
trends can be observed and compared with the real data set.
We also examine the effect of varying the value distribution
of the synthetic data set.

For the FT-NRP protocol, the default value of ! is zero,
and immediate compensation is not used. These are the
same parameter settings for the experiments used in our
previous paper [7].

The two metrics used to measure the protocol perfor-
mance are: 1) the total number of messages generated and
2) the amount of energy consumed, based on the cost
model described in Sections 6.2 and 6.3. For the para-
meters of power consumption, we adopt the specifications
used by an MICA2 mote [9]: the operation voltage of each
sensor is 3.6 V, the transmission power Pt is 77.4 mJ (at a
distance of þ10 dBm), the reception power is 25.2 mJ, and
the sensing power Ps is 2.52 mJ. The sensing frequency is
once every 5,000 time units.

6.5 Results

We describe the simulation results for range queries, a
nonrank-based query, in Section 6.5.1. Section 6.5.2 presents
the results for k-NN query, a rank-based query.

6.5.1 Nonrank-Based Queries

We examine how well the FT-NRP protocol exploits the
saving in messages and energy consumption for range
queries. Fig. 9a shows that the number of messages
decreases as �þ and �� increase. For example, at �þ ¼
�� ¼ 0:1, the improvement over ZT-NRP (which does not
exploit tolerance) is 2.65 percent. Hence, FT-NRP performs
better than ZT-NRP. Fig. 9b shows a similar behavior for
energy consumption: 3.49 percent saving over ZT-NRP is
achieved at �þ ¼ �� ¼ 0:1; and about 38 percent of power is
saved at �þ ¼ �� ¼ 0:5.

For synthetic data, we examine FT-NRP under different
values of �þ and ��. Figs. 9c and 9d show that FT-NRP
exploits tolerance on both messages and energy saving
effectively similar to the real data. For example, at
�þ ¼ �� ¼ 0:1, the message and energy savings are 2.25 and
2.22 percent, respectively. The relatively small improvement
at small tolerance values (e.g., �þ ¼ �� ¼ 0:1) is due to the
fact that the answer set is quite small (20 percent of stream

244 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 2, FEBRUARY 2010

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

sources), and so, only a small number of false positive/
negative filters can be used. The overhead of maintaining
these filters thus affects the performance of the protocol.

Data fluctuation. Fig. 9e illustrates the effect of data
fluctuation (i.e., the amount of difference between two
adjacent values in a stream) on FT-NRP, for synthetic data.
We test the cases when �þ ¼ ��, with different values of
standard deviation (�). For all values of � tested, the
performance improves with larger values of �þ and ��.
Another observation is that as � increases, FT-NRP yields
more messages. When a data value changes more abruptly,
it has a higher chance of violating the filter bound constraint
and generating an update.

Selection heuristics. We explore how FT-NRP is
affected by the assignment of false positive/negative
filters during initialization. Specifically, we compare the
performance of two heuristics: random and boundary-
nearest. Fig. 9f shows that boundary-nearest is only slightly
better than random. The difference is small because the
assumption that values closer to the query boundary are
more likely for its future values to cross the boundary
again may not hold. For example, an object can be moving
away from the boundary, and so, even if it is close to the
boundary during initialization, it is not necessarily worth
to assign a false positive/negative filter to its correspond-
ing stream source. As we will illustrate, the use of
incremental deployment—assign a fraction of 1� ! filters

to the stream sources, and only allocate a filter to the
stream source when it generates an update—often results
in a better performance.

Let us now focus on real data.
Scalability with data and queries. We also test the effect

of the number of stream sources and queries on FT-NRP.
Fig. 9g shows that FT-NRP scales well with the number of
stream sources, under different values of �þ and ��. We
further investigate the performance of our protocols in
handling multiple queries, as discussed in Section 4.4. We
consider a varying number of queries under different
distributions. These queries are executed at the same time.
The centers of the query ranges follow a normal distribution
with a standard deviation (�). As shown in Fig. 9h, the
protocols, in general, scale well over a large range of number
of queries. The number of messages does not increase
linearly with the number of queries. This is because
individual updates can be shared by more queries as the
number of queries increases. Consider, for instance, two
range queries that have a high degree of overlap. Then, the
crossing of boundary for one query will likely co-occurs with
the crossing of the other query’s boundary. Hence, only one
update is necessary for both queries. With a similar
argument, we can see that the protocol performs better when
the distribution of the queries is denser (i.e., decreases from
� ¼ 100 to � ¼ 50), because each update can be shared by
more queries.

CHENG ET AL.: FILTERING DATA STREAMS FOR ENTITY-BASED CONTINUOUS QUERIES 245

Fig. 9. Experiments on FT-NRP. (a) # messages (real). (b) Energy (real). (c) # messages (synthetic). (d) Energy (synthetic). (e) Data fluctuation.
(f) Selection heuristics. (g) Scalability. (h) Multiple queries. (i) Incremental deployment (# messages). (j) Incremental deployment (energy).
(k) Immediate compensation. (l) Immediate compensation and !.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

Incremental deployment. Fig. 9i illustrates the effect of !
on the number of messages. Recall that the larger the value of
!, the lower the number of stream sources is assigned with
false positive/negative filters in the initialization phase.
These filters are only assigned in the maintenance phase,
when their values cross the query boundaries. We can see
that the performance improves with a larger value of !.
There are two reasons. First, before the initialization phase,
we may not know exactly which stream sources are worthy
to be installed with the false positive/negative filters. If a
stream source is assigned with a false positive filter but its
value actually has little chance of crossing the boundary,
then this filter is wasted. By delaying the filter assignment
until a stream’s value has crossed the query boundary, the
filter is allocated to a stream source which is more “active”
(in crossing the query boundary), so that any other updates
generated by this stream source are dropped. Second,
observe that fixError will be executed in Step 2(III)(a) if
one of the two conditions is violated. If nþ and n� are smaller
than the maximum values allowed (correspondingly emaxþ

and emin�), then fixError will not be executed. If ! is
nonzero, then the initial values of nþ and n� will be less than
the maximum values allowed, and so, fixError, which is a
costly operation, will be less likely to be executed upon the
arrival of updates. We can observe similar results for energy
saving, as shown in Fig. 9j.

Immediate compensation. In this experiment, we exam-
ine the use of immediate compensation in fixError.
Fig. 9k shows the number of messages required, for three
values of ! (0, 0.1 and 0.3). We can see that for all the values
of ! shown, immediate compensation provides better
performance than if it is not used. This is because the
fixError in [7] replaces some false positive/negative
filters with ½l; u� filters. Hence, fewer updates can be filtered
after its execution. Immediate compensation, on the other
hand, maintains the number of false positive/negative
filters in most cases. Therefore, it provides a better
performance than the original protocol.

We also note that the effect of immediate compensation is
more profound at smaller values of !. This is because at a
large !, more false positive/negative filters are preserved
for future use, and it is less likely for fixError to be
invoked (fixError is only executed if all the false
positive/negative filters have been assigned). In fact,
although not shown in the graph, when ! is larger than
0.5, immediate compensation almost yields no benefit. Thus,
immediate compensation is more useful for small ! values.

In Fig. 9l, we show the effect of immediate compensation
for different ! values. We can see that except for ! ¼ 0, as !
increases, the performance improves. For ! ¼ 0, all the false
positive/negative filters have been assigned during initi-
alization, and more stream sources can be allocated with
filters in the beginning than other ! values. If immediate
compensation is further used, with ! ¼ 0, the protocol
could retain the largest number of filters after fixError,
and so, it performs well in this experiment.

6.5.2 Rank-Based Queries

Next, we examine how FT-RP exploits the fraction-based
tolerance for k-NN query, a rank-based query. Fig. 10a
shows the result under three values of k: 20, 60, and 100. As
we can see, when k is 60 or 100, the number of messages
drops significantly with a small increase in tolerance. This is
because the boundR for enclosing the k nearest objects is not
“tight,” and so, objects can cross R without requiring R to be
recomputed and sent to the stream sources. With zero
tolerance, however, R virtually changes every time an object
crosses it. When k ¼ 20 and �þ ¼ �� ¼ 0:1, the protocol
yields a high message cost. This is because the number of
false positive/negative filters assigned is limited. Therefore,
the little benefit of tolerance cannot overcome the high
maintenance cost. Thus, FT-RP is not suitable in this
situation. For energy consumption, the radio energy
incurred by message transmission dominates; thus, as
shown in Fig. 10b, the overall energy consumption follows
the same behavior as message count.

Figs. 10c and 10d show the performance of the protocols
for the synthetic data set. The result is similar to the case of
real data. We note that the performance for k ¼ 20 for
synthetic data is better than the real data set. The reason is
that the values of the synthetic data are relatively stable (i.e.,
they crossed the R bound less frequently). Thus, the
number of updates generated, as well as the recomputation
of R, is smaller.

Finally, we examine Incremental Deployment and Im-
mediate Compensation for FT-RP using the real data set.
We assume k ¼ 60. Figs. 11a and 11b show the results of
message count and energy consumption, respectively. In
contrast to FT-NRP, Incremental Deployment has a rela-
tively small improvement. Recall from (17) that the values
of �þ and �� are usually smaller than the user-specified
tolerance (i.e., �þ and ��). Thus, the number of false
positive/negative filters computed is small, and the
performance is relatively insensitive to the value of !.

246 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 2, FEBRUARY 2010

Fig. 10. Experiments on FT-RP. (a) # messages (real). (b) Energy (real). (c) # messages (synthetic). (d) Energy (synthetic).

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

On the other hand, Immediate Compensation performs
much better when the tolerance is at 0.1—a message saving
of 75 percent can be achieved. Due to the smaller number of
false positive/negative filters available, fixError has to
be executed more frequently. By using Immediate Com-
pensation, the false positive/negative filters are more likely
to be retained after the evaluation of fixError. This, in
turn, reduces the number of recomputation and deploy-
ment of the new R bound, resulting in a better performance.

7 CONCLUSIONS

In this paper, we developed protocols to improve the
performance of data stream management systems. The main
idea of these protocols is to translate fraction-based query
tolerance to filter bounds, and transmit these bounds to the
stream sources. The stream sources can then conditionally
drop their updates without affecting query correctness. We
designed algorithms that initiate and maintain filter bounds
for nonrank- and rank-based queries. We further presented
two variations of these protocols, namely, incremental
deployment and immediate compensation. Through detailed
testing on real and synthetic data, we verified the effective-
ness of our protocols in reducing communication and
energy costs.

For future work, we will enhance our algorithm to adapt
to the addition of stream sources during query execution.
We also want to examine how the value distribution across
different data streams can be used to design better filter
assignment policies. We will address how other data stream
optimization algorithms (e.g., synopses construction and
load shedding) can employ the notion of fraction-based
tolerance. We will also study how this new notion can be
used to design filters for other query types (e.g., joins).
Another interesting study is to design a new correctness
notion that combines the advantages of value-based and
nonvalue-based tolerances, and develop filtering protocols
accordingly. Such a tolerance could be useful when a user is
not only concerned about the number of false positives, but
also that the actual values of the false answers are not too far
away from the query range. Another interesting question is
how our protocols can be applied to sensor-networked
environments, where each sensor can be viewed as a stream
source. The challenge is to exploit the unique characteristics
of sensor networks (e.g., sensors are arranged in a
hierarchical manner) in order to further optimize the use
of energy and bandwidth resources.

ACKNOWLEDGMENTS

This work was supported by the Research Grants Council of

Hong Kong (GRF Projects 513508 and 513307), the Germany/

HK Joint Research Scheme (Project G_HK013/06), and the

University of Hong Kong (Project 200808159002). The

authors thank the reviewers for their insightful comments.

REFERENCES

[1] D. Abadi et al., “The Design of the Borealis Stream Processing
Engine,” Proc. Second Biennial Conf. Innovative Data Systems
Research (CIDR), 2005.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless Sensor Networks: A Survey,” Computer Networks J.,
vol. 38, no. 4, pp. 393-422, Mar. 2002.

[3] A. Arasu et al., “Characterizing Memory Requirements for
Queries over Continuous Data Streams,” ACM Trans. Database
Systems, vol. 29, no. 1, pp. 162-194, 2004.

[4] B. Babcock and C. Olston, “Distributed Top-k Monitoring,” Proc.
ACM SIGMOD, 2003.

[5] M. Charikar, K. Chen, and M. Farach-Colton, “Finding Frequent
Items in Data Streams,” Theoretical Computer Science, vol. 312,
pp. 3-15, 2004.

[6] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating
Probabilistic Queries over Imprecise Data,” Proc. ACM SIGMOD,
2003.

[7] R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y. Tu, “Adaptive
Stream Filters for Entity-Based Queries with Non-Value Toler-
ance,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2005.

[8] Y. Chi, H. Wang, P. Yu, and R. Muntz, “Loadstar: A Load
Shedding Scheme for Classifying Data Streams,” Proc. SIAM Conf.
Data Mining, 2005.

[9] MPR—Mote Processor Radio Board User’s Manual. Crossbow, Inc.,
2003.

[10] B. Cui et al., “Exploring Bit-Difference for Approximate knn
Search in High-Dimensional Databases,” Proc. Australasian Data-
base Conf., 2005.

[11] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Hierarchical
In-Network Data Aggregation with Quality Guarantees,” Proc.
Conf. Extending Database Technology (EDBT), 2004.

[12] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W.
Hong, “Model-Driven Data Acquisition in Sensor Networks,”
Proc. Int’l Conf. Very Large Data Bases (VLDB), 2004.

[13] L. Doherty, B.A. Warneke, B.E. Boser, and K.S.J. Peter, “Energy
and Performance Considerations for Smart Dust,” Int’l J. Parallel
and Distributed Sensor Networks, vol. 4, no. 3, pp. 121-133, 2001.

[14] D. Abadiand et al., “Aurora: A Data Stream Management
System,” Proc. ACM SIGMOD, 2003.

[15] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani,
“Streaming Algorithms for Robust, Real-Time Detection of
DDoS Attacks,” Proc. Int’l Conf. Distributed Computing Systems
(ICDCS), 2007.

[16] M. Greenwald and S. Khanna, “Power-Conserving Computation
of Order Statistics over Sensor Networks,” Proc. Symp. Principles of
Database System (PODS), 2004.

[17] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient IR-
Style Keyword Search over Relational Databases,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), 2003.

[18] G. Iwerks, H. Samet, and K. Smith, “Continuous k-Nearest
Neighbor Queries for Continuously Moving Points with Up-
dates,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2003.

[19] A. Jain, E. Chang, and Y. Wang, “Adaptive Stream Resource
Management Using Kalman Filters,” Proc. ACM SIGMOD, 2004.

[20] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D.
Rubenstein, “Energy-Efficient Computing for Wildlife Tracking:
Design Tradeoffs and Early Experiences with ZebraNet,” Proc.
Ann. Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), 2002.

[21] S. Khanna and W. Tan, “On Computing Functions with Un-
certainty,” Proc. Symp. Principles of Database System (PODS), 2001.

[22] N. Koudas, B. Ooi, K. Tan, and R. Zhang, “Approximate NN
Queries on Streams with Guaranteed Error/Performance Bounds,”
Proc. Int’l Conf. Very Large Data Bases (VLDB), 2004.

CHENG ET AL.: FILTERING DATA STREAMS FOR ENTITY-BASED CONTINUOUS QUERIES 247

Fig. 11. Incremental deployment (FT-RP). (a) # messages (real).
(b) Energy (real).

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

[23] Lawrance Berkeley National Laboratory, The Internet Traffic
Archive, http://ita.ee.lbl.gov, 2009.

[24] O. Landsiedel, K. Wehrle, and S. Gotz, “Accurate Prediction of
Power Consumption in Sensor Networks,” Proc. IEEE Workshop
Embedded Networked Sensors (EmNetS II), 2005.

[25] Z. Liu, K.C. Sia, and J. Cho, “Cost Efficient Processing of Min/Max
Queries over Distributed Sensors with Uncertainty,” Proc. ACM
Symp. Applied Computing (SAC), 2005.

[26] K. Mouratidis et al., “A Threshold-Based Algorithm for Contin-
uous Monitoring of k Nearest Neighbors,” IEEE Trans. Knowledge
and Data Eng., vol. 17, no. 11, pp. 1451-1464, Nov. 2005.

[27] J. Ni and C.V. Ravishankar, “Probabilistic Spatial Database
Operations,” Proc. Int’l Symp. Advances in Spatial and Temporal
Databases (SSTD), 2003.

[28] C. Olston, J. Jiang, and J. Widom, “Adaptive Filters for
Continuous Queries over Distributed Data Streams,” Proc. ACM
SIGMOD, 2003.

[29] V. Poosala and V. Ganti, “Fast Approximate Query Answering
Using Precomputed Statistics,” Proc. Int’l Conf. Data Eng. (ICDE),
1999.

[30] A. Silberstein, R. Braynard, and J. Yang, “Constraint Chaining: On
Energy-Efficient Continuous Monitoring in Sensor Networks,”
Proc. ACM SIGMOD ’06, 2006.

[31] N. Tatbul et al., “Load Shedding in a Data Stream Manager,” Proc.
Int’l Conf. Very Large Data Bases (VLDB), 2003.

[32] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao, “Load Shedding in
Stream Databases: A Control-Based Approach,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), 2006.

[33] Mesquite Software, CSIM 19, http://www.mesquite.com, 2009.
[34] S. Vrbsky and J. Liu, “Producing Approximate Answers to Set-

and Single-Valued Queries,” J. Systems and Software, vol. 27, no. 3,
pp. 243-251, 1994.

[35] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha, “Updating
and Querying Databases That Track Mobile Units,” Distributed and
Parallel Databases, vol. 7, no. 3, pp. 257-387, 1999.

Reynold Cheng received the BEng degree in
computer engineering and the MPhil in compu-
ter science and information systems from the
University of Hong Kong (HKU) in 1998 and
2000, respectively, and the MSc and PhD
degrees from the Department of Computer
Science, Purdue University, in 2003 and 2005,
respectively. He is an assistant professor in the
Department of Computer Science at HKU.
From 2005 to 2008, he was an assistant

professor in the Department of Computing at Hong Kong Polytechnic
University, where he received two Performance Awards. He is a
member of the IEEE, the ACM, the ACM SIGMOD, and the UPE. He
has served on the program committees and review panels for leading
database conferences and journals like VLDB, ICDE, and TODS. He is
also a guest editor for a special issue in TKDE. His research interests
include database management, as well as querying and mining of
uncertain data.

Ben C.M. Kao received the BSc degree in
computer science from the University of Hong
Kong in 1989, and the PhD degree in computer
science from Princeton University in 1995. From
1989 to 1991, he was a teaching and research
assistant at Princeton University. From 1992 to
1995, he was a research fellow at Stanford
University. He is currently an associate profes-
sor in the Department of Computer Science at
the University of Hong Kong. His research

interests include database management systems, data mining, real-
time systems, and information retrieval systems.

Alan Kwan received the BSc (Hons) degree in
computer studies from the City University of
Hong Kong in 2002, and the MPhil degree
from the University of Hong Kong in 2007. He
is currently a solution architect manager at an
information technology company in Hong Kong.
He is interested in the area of continuous
query evaluation.

Sunil Prabhakar received the Bachelor of
Technology degree in electrical engineering from
the Indian Institute of Technology, Delhi, in 1990,
and the MS and PhD degrees in computer
science from the University of California, Santa
Barbara, in 1998. He is an associate professor of
computer sciences at Purdue University. His
current research interests are in uncertain
databases, sensor and streams databases, data
privacy, and scientific databases. He is a

recipient of the US National Science Foundation (NSF) CAREER Award.
He serves on the editorial board for the Distributed and Parallel
Databases Journal and has served on the program committees for
leading database conferences such as VLDB, SIGMOD, and ICDE.

Yi-Cheng Tu received the bachelor’s degree in
horticulture from Beijing Agricultural University,
China, and the MS and PhD degrees in
computer science from Purdue University in
2003 and 2007, respectively. He is currently an
assistant professor in the Department of Com-
puter Science and Engineering at the University
of South Florida. His current research efforts
address energy-efficient query processing, self-
tuning databases, and scientific data proces-

sing. He had also worked on data stream management systems, peer-
to-peer systems, and multimedia databases. He is a member of the
IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

248 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 2, FEBRUARY 2010

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 07,2010 at 04:05:55 UTC from IEEE Xplore. Restrictions apply.

