50 research outputs found

    A Role for Immune Responses against Non-CS Components in the Cross-Species Protection Induced by Immunization with Irradiated Malaria Sporozoites

    Get PDF
    Immunization with irradiated Plasmodium sporozoites induces sterile immunity in rodents, monkeys and humans. The major surface component of the sporozoite the circumsporozoite protein (CS) long considered as the antigen predominantly responsible for this immunity, thus remains the leading candidate antigen for vaccines targeting the parasite's pre-erythrocytic (PE) stages. However, this role for CS was questioned when we recently showed that immunization with irradiated sporozoites (IrrSpz) of a P. berghei line whose endogenous CS was replaced by that of P. falciparum still conferred sterile protection against challenge with wild type P. berghei sporozoites. In order to investigate the involvement of CS in the cross-species protection recently observed between the two rodent parasites P. berghei and P. yoelii, we adopted our gene replacement approach for the P. yoelii CS and exploited the ability to conduct reciprocal challenges. Overall, we found that immunization led to sterile immunity irrespective of the origin of the CS in the immunizing or challenge sporozoites. However, for some combinations, immune responses to CS contributed to the acquisition of protective immunity and were dependent on the immunizing IrrSpz dose. Nonetheless, when data from all the cross-species immunization/challenges were considered, the immune responses directed against non-CS parasite antigens shared by the two parasite species played a major role in the sterile protection induced by immunization with IrrSpz. This opens the perspective to develop a single vaccine formulation that could protect against multiple parasite species

    Gene-Specific Signatures of Elevated Non-Synonymous Substitution Rates Correlate Poorly across the Plasmodium Genus

    Get PDF
    BACKGROUND: Comparative genome analyses of parasites allow large scale investigation of selective pressures shaping their evolution. An acute limitation to such analysis of Plasmodium falciparum is that there is only very partial low-coverage genome sequence of the most closely related species, the chimpanzee parasite P. reichenowi. However, if orthologous genes have been under similar selective pressures throughout the Plasmodium genus then positive selection on the P. falciparum lineage might be predicted to some extent by analysis of other lineages. PRINCIPAL FINDINGS: Here, three independent pairs of closely related species in different sub-generic clades (P. falciparum and P. reichenowi; P. vivax and P. knowlesi; P. yoelii and P. berghei) were compared for a set of 43 candidate ligand genes considered likely to be under positive directional selection and a set of 102 control genes for which there was no selective hypothesis. The ratios of non-synonymous to synonymous substitutions (dN/dS) were significantly elevated in the candidate ligand genes compared to control genes in each of the three clades. However, the rank order correlation of dN/dS ratios for individual candidate genes was very low, less than the correlation for the control genes. SIGNIFICANCE: The inability to predict positive selection on a gene in one lineage by identifying elevated dN/dS ratios in the orthologue within another lineage needs to be noted, as it reflects that adaptive mutations are generally rare events that lead to fixation in individual lineages. Thus it is essential to complete the genome sequences of particular species of phylogenetic importance, such as P. reichenowi

    Plasmodium falciparum Merozoite Invasion Is Inhibited by Antibodies that Target the PfRh2a and b Binding Domains

    Get PDF
    Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes

    Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice?

    Get PDF
    Critically ill patients are highly variable in their response to care and treatment. This variability and the search for improved outcomes have led to a significant increase in the use of protocolized care to reduce variability in care. However, protocolized care does not address the variability of outcome due to inter- and intra-patient variability, both in physiological state, and the response to disease and treatment. This lack of patient-specificity defines the opportunity for patient-specific approaches to diagnosis, care, and patient management, which are complementary to, and fit within, protocolized approaches

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies

    Get PDF
    International audienceAbstractGastrointestinal disease caused by the apicomplexan parasite Cryptosporidium parvum is one of the most important diseases of young ruminant livestock, particularly neonatal calves. Infected animals may suffer from profuse watery diarrhoea, dehydration and in severe cases death can occur. At present, effective therapeutic and preventative measures are not available and a better understanding of the host–pathogen interactions is required. Cryptosporidium parvum is also an important zoonotic pathogen causing severe disease in people, with young children being particularly vulnerable. Our knowledge of the immune responses induced by Cryptosporidium parasites in clinically relevant hosts is very limited. This review discusses the impact of bovine cryptosporidiosis and describes how a thorough understanding of the host–pathogen interactions may help to identify novel prevention and control strategies

    Crystal structure of the FK506 binding domain of Plasmodium falciparum FKBP35 in complex with FK506

    No full text
    The emergence of multi-drug-resistant strains of Plasmodium parasites has prompted the search for alternative therapeutic strategies for combating malaria. One possible strategy is to exploit existing drugs as lead compounds. FK506 is currently used in the clinic for preventing transplant rejection. It binds to a α/β protein module of approximately 120 amino acids known as the FK506 binding domain (FKBD), which is found in various organisms, including human, yeast, and Plasmodium falciparum (PfFKBD). Antiparasitic effects of FK506 and its analogues devoid of immunosuppressive activities have been demonstrated. We report here the crystallographic structure at 2.35 Å resolution of PfFKBD complexed with FK506. Compared to the human FKBP12-FK506 complex reported earlier, the structure reveals structural differences in the β5-β6 segment that lines the FK506 binding site. The presence in PfFKBD of Cys-106 and Ser-109 (substituting for His-87 and Ile-90, respectively, in human FKBP12), which are 4-5 Å from the nearest atom of the FK506 compound, suggests possible routes for the rational design of analogues of FK506 with specific antiparasitic activity. Upon ligand binding, several conformational changes occur in PfFKBD, including aromatic residues that shape the FK506 binding pocket as shown by NMR studies. A microarray analysis suggests that FK506 and cyclosporine A (CsA) might inhibit parasite development by interfering with the same signaling pathways. © 2008 American Chemical Society.link_to_subscribed_fulltex

    Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites

    No full text
    Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium
    corecore