9 research outputs found

    Loss of Receptor on Tuberculin-Reactive T-Cells Marks Active Pulmonary Tuberculosis

    Get PDF
    BACKGROUND: Tuberculin-specific T-cell responses have low diagnostic specificity in BCG vaccinated populations. While subunit-antigen (e.g. ESAT-6, CFP-10) based tests are useful for diagnosing latent tuberculosis infection, there is no reliable immunological test for active pulmonary tuberculosis. Notably, all existing immunological tuberculosis-tests are based on T-cell response size, whereas the diagnostic potential of T-cell response quality has never been explored. This includes surface marker expression and functionality of mycobacterial antigen specific T-cells. METHODOLOGY/PRINCIPAL FINDINGS: Flow-cytometry was used to examine over-night antigen-stimulated T-cells from tuberculosis patients and controls. Tuberculin and/or the relatively M. tuberculosis specific ESAT-6 protein were used as stimulants. A set of classic surface markers of T-cell naive/memory differentiation was selected and IFN-gamma production was used to identify T-cells recognizing these antigens. The percentage of tuberculin-specific T-helper-cells lacking the surface receptor CD27, a state associated with advanced differentiation, varied considerably between individuals (from less than 5% to more than 95%). Healthy BCG vaccinated individuals had significantly fewer CD27-negative tuberculin-reactive CD4 T-cells than patients with smear and/or culture positive pulmonary tuberculosis, discriminating these groups with high sensitivity and specificity, whereas individuals with latent tuberculosis infection exhibited levels in between. CONCLUSIONS/SIGNIFICANCE: Smear and/or culture positive pulmonary tuberculosis can be diagnosed by a rapid and reliable immunological test based on the distribution of CD27 expression on peripheral blood tuberculin specific T-cells. This test works very well even in a BCG vaccinated population. It is simple and will be of great utility in situations where sputum specimens are difficult to obtain or sputum-smear is negative. It will also help avoid unnecessary hospitalization and patient isolation

    Expression of M. tuberculosis-induced suppressor of cytokine signaling (SOCS) 1, SOCS3, FoxP3 and secretion of IL-6 associates with differing clinical severity of tuberculosis

    Get PDF
    Background Appropriate immune activation of T cells and macrophages is central for the control of Mycobacterium tuberculosis infections. IFN-γ stimulated responses are lowered in tuberculosis (TB), while expression of Suppressor of Cytokine Signaling (SOCS) molecules – 1 and 3 and CD4+CD25+FoxP3+T regulatory cells is increased. Here we investigated the association of these molecules in regard to clinical severity of TB. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from patients with pulmonary TB (PTB, n = 33), extra-pulmonary TB (ETB, n = 33) and healthy endemic controls (EC, n = 15). Cases were classified as moderately advanced or far advanced PTB, and less severe or severe disseminated ETB. M. tuberculosis -stimulated IFN-γ, SOCS1, SOCS3 and FoxP3 gene expression and secretion of Th1 and Th2 cytokines was measured. Statistical analysis was performed using Mann–Whitney U, Wilcoxon Rank and Kruskal Wallis non-parametric tests. Results In un-stimulated PBMCs, IL-6 (p = 0.018) and IL-10 (p = 0.013) secretion levels were increased in PTB while IL-10 was also increased in ETB (p = 0.003), all in comparison with EC. M. tuberculosis-stimulated IL-6 (p = 0.003) was lowered in ETB as compared with EC. SOCS1 mRNA expression in M. tuberculosis stimulated PBMCs levels in moderately advanced PTB (p = 0.022), far advanced (p = 0.014) PTB, and severe ETB (p = 0.009) were raised as compared with EC. On the other hand, SOCS1 mRNA titers were reduced in less severe ETB, in comparison with severe ETB (p = 0.027) and far advanced PTB (p = 0.016). SOCS3 mRNA accumulation was reduced in far advanced PTB (p = 0.007) and FoxP3 mRNA expression was increased in less severe ETB as compared with EC (p = 0.017). Conclusions The lowered SOCS1 mRNA levels in patients with less severe extra-pulmonary TB as compared to those with more severe ETB and PTB may lead to elevated IFN-γ pathway gene expression in the latter group. As localized ETB has shown to be associated with more effective Th1 immunity and adaptive responses, this suggests a role for SOCS1 in determining disease outcome in extra-pulmonary TB

    Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Confirming tuberculosis (TB) disease in suspects in resource limited settings is challenging and calls for the development of more suitable diagnostic tools. Different <it>Mycobacterium tuberculosis (M.tb) </it>infection phase-dependent antigens may be differentially recognized in infected and diseased individuals and therefore useful as diagnostic tools for differentiating between <it>M.tb </it>infection states. In this study, we assessed the diagnostic potential of 118 different <it>M.tb </it>infection phase-dependent antigens in TB patients and household contacts (HHCs) in a high-burden setting.</p> <p>Methods</p> <p>Antigens were evaluated using the 7-day whole blood culture technique in 23 pulmonary TB patients and in 19 to 21 HHCs (total n = 101), who were recruited from a high-TB incidence community in Cape Town, South Africa. Interferon-gamma (IFN-γ) levels in culture supernatants were determined by ELISA.</p> <p>Results</p> <p>Eight classical TB vaccine candidate antigens, 51 DosR regulon encoded antigens, 23 TB reactivation antigens, 5 TB resuscitation promoting factors (rpfs), 6 starvation and 24 other stress response-associated TB antigens were evaluated in the study. The most promising antigens for ascertaining active TB were the rpfs (Rv0867c, Rv2389c, Rv2450c, Rv1009 and Rv1884c), with Areas under the receiver operating characteristics curves (AUCs) between 0.72 and 0.80. A combination of <it>M.tb </it>specific ESAT-6/CFP-10 fusion protein, Rv2624c and Rv0867c accurately predicted 73% of the TB patients and 80% of the non-TB cases after cross validation.</p> <p>Conclusions</p> <p>IFN-γ responses to TB rpfs show promise as TB diagnostic candidates and should be evaluated further for discrimination between <it>M.tb </it>infection states.</p

    Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease

    No full text
    corecore