6,883 research outputs found
HoloCam: A subsea holographic camera for recording marine organisms and particles
The HoloCam system is a major component of a multi-national multi-discipline project known as HoloMar (funded by the European Commission under the MAST III initiative). The project is concerned with the development of pulsed laser holography to analyse and monitor the populations of living organisms and inanimate particles within the world's oceans. We describe here the development, construction and evaluation of a prototype underwater camera, the purpose of which is to record marine organisms and particles, in-situ. Recording using holography provides several advantages over conventional sampling methods in that it allows non-intrusive, non-destructive, high-resolution imaging of large volumes (up to 10^5 cm^3) in three dimensions. The camera incorporates both in-line and off-axis holographic techniques, which allows particles from a few micrometres to tens of centimetres to be captured. In tandem with development of the HoloCam, a dedicated holographic replay system and an automated data extraction and image processing facility are being developed. These will allow, optimisation of the images recorded by the camera, identification of species and particle concentration plotting
Providing Self-Aware Systems with Reflexivity
We propose a new type of self-aware systems inspired by ideas from
higher-order theories of consciousness. First, we discussed the crucial
distinction between introspection and reflexion. Then, we focus on
computational reflexion as a mechanism by which a computer program can inspect
its own code at every stage of the computation. Finally, we provide a formal
definition and a proof-of-concept implementation of computational reflexion,
viewed as an enriched form of program interpretation and a way to dynamically
"augment" a computational process.Comment: 12 pages plus bibliography, appendices with code description, code of
the proof-of-concept implementation, and examples of executio
A Single Dose of Prednisolone as a Modulator of Undercarboxylated Osteocalcin and Insulin Sensitivity Post-Exercise in Healthy Young Men: A Study Protocol
Background: Undercarboxylated osteocalcin (ucOC) increases insulin sensitivity in mice. In humans, data are supportive, but the studies are mostly cross-sectional. Exercise increases whole-body insulin sensitivity, in part via ucOC, while acute glucocorticoid treatment suppresses ucOC in humans and mice.Objectives: A single dose of prednisolone reduces the rise in ucOC produced by exercise, which partly accounts for the failed increase in insulin sensitivity following exercise.Methods: Healthy young men (n=12) aged 18 to 40 years will be recruited. Initial assessments will include analysis of fasting blood, body composition, aerobic power (VO2peak), and peak heart rate. Participants will then be randomly allocated, double-blind, to a single dose of 20 mg of prednisolone or placebo. The two experimental trials will involve 30 minutes of interval exercise (90%-95% peak heart rate), followed by 3 hours of recovery and 2 hours of euglycaemic- hyperinsulinaemic clamp (insulin clamp). Seven muscle biopsies and blood samples will be obtained at rest, following exercise and post-insulin clamps.Results: The study is funded by the National Heart Foundation of Australia and Victoria University. Enrollment has already commenced and data collection will be completed in 2016.Conclusion: If the hypothesis is confirmed, the study will provide novel insights into the potential role of ucOC in insulin sensitivity in human subjects and will elucidate pathways involved in exercise-induced insulin sensitivity
Discovery of the Acoustic Faraday Effect in Superfluid 3He-B
We report the discovery of the acoustic Faraday effect in superfluid 3He-B.
The observation of this effect provides the first direct evidence for
propagating transverse acoustic waves in liquid 3He, a mode first predicted by
Landau in 1957. The Faraday rotation is large and observable because of
spontaneously broken spin-orbit symmetry in 3He-B. We compare the experimental
observations with a simulation of the transverse acoustic impedance that
includes the field-induced circular birefringence of transverse waves.Comment: 4 pages in RevTex plus 3 postscript figures; new version includes:
minor corrections to the text and an updated of list of reference
Graviton Vertices and the Mapping of Anomalous Correlators to Momentum Space for a General Conformal Field Theory
We investigate the mapping of conformal correlators and of their anomalies
from configuration to momentum space for general dimensions, focusing on the
anomalous correlators , - involving the energy-momentum tensor
with a vector or a scalar operator () - and the 3-graviton vertex
. We compute the , and one-loop vertex functions in
dimensional regularization for free field theories involving conformal scalar,
fermion and vector fields. Since there are only one or two independent tensor
structures solving all the conformal Ward identities for the or
vertex functions respectively, and three independent tensor structures for the
vertex, and the coefficients of these tensors are known for free fields,
it is possible to identify the corresponding tensors in momentum space from the
computation of the correlators for free fields. This works in general
dimensions for and correlators, but only in 4 dimensions for ,
since vector fields are conformal only in . In this way the general
solution of the Ward identities including anomalous ones for these correlators
in (Euclidean) position space, found by Osborn and Petkou is mapped to the
ordinary diagrammatic one in momentum space. We give simplified expressions of
all these correlators in configuration space which are explicitly Fourier
integrable and provide a diagrammatic interpretation of all the contact terms
arising when two or more of the points coincide. We discuss how the anomalies
arise in each approach [...]Comment: 57 pages, 7 figures. Refs adde
Quantum Back Reaction to asymptotically AdS Black Holes
We analyze the effects of the back reaction due to a conformal field theory
(CFT) on a black hole spacetime with negative cosmological constant. We study
the geometry numerically obtained by taking into account the energy momentum
tensor of CFT approximated by a radiation fluid. We find a sequence of
configurations without a horizon in thermal equilibrium (CFT stars), followed
by a sequence of configurations with a horizon. We discuss the thermodynamic
properties of the system and how back reaction effects alter the space-time
structure. We also provide an interpretation of the above sequence of solutions
in terms of the AdS/CFT correspondence. The dual five-dimensional description
is given by the Karch-Randall model, in which a sequence of five-dimensional
floating black holes followed by a sequence of brane localized black holes
correspond to the above solutions.Comment: 13 pages, 10 figure
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean
0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy
We present a class of exact analytic and static, spherically symmetric black
hole solutions in the semi-classical Einstein equations with Weyl anomaly. The
solutions have two branches, one is asymptotically flat and the other
asymptotically de Sitter. We study thermodynamic properties of the black hole
solutions and find that there exists a logarithmic correction to the well-known
Bekenstein-Hawking area entropy. The logarithmic term might come from non-local
terms in the effective action of gravity theories. The appearance of the
logarithmic term in the gravity side is quite important in the sense that with
this term one is able to compare black hole entropy up to the subleading order,
in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE
Loop Quantum Gravity and the The Planck Regime of Cosmology
The very early universe provides the best arena we currently have to test
quantum gravity theories. The success of the inflationary paradigm in
accounting for the observed inhomogeneities in the cosmic microwave background
already illustrates this point to a certain extent because the paradigm is
based on quantum field theory on the curved cosmological space-times. However,
this analysis excludes the Planck era because the background space-time
satisfies Einstein's equations all the way back to the big bang singularity.
Using techniques from loop quantum gravity, the paradigm has now been extended
to a self-consistent theory from the Planck regime to the onset of inflation,
covering some 11 orders of magnitude in curvature. In addition, for a narrow
window of initial conditions, there are departures from the standard paradigm,
with novel effects, such as a modification of the consistency relation
involving the scalar and tensor power spectra and a new source for
non-Gaussianities. Thus, the genesis of the large scale structure of the
universe can be traced back to quantum gravity fluctuations \emph{in the Planck
regime}. This report provides a bird's eye view of these developments for the
general relativity community.Comment: 23 pages, 4 figures. Plenary talk at the Conference: Relativity and
Gravitation: 100 Years after Einstein in Prague. To appear in the Proceedings
to be published by Edition Open Access. Summarizes results that appeared in
journal articles [2-13
- …
