18 research outputs found

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Exploration of P-type Ca2+ channels as drug targets for the treatment of epilepsy or ischemic stroke.

    No full text
    We investigated the neuroprotective efficacy of the P-type Ca2+ channel antagonist daurisoline against electroshock-induced convulsions in rats and mice, hypoxic/hypoglycemic-induced damage in rat hippocampal slices and brain damage induced by occlusion of the middle cerebral artery (MCA) in rats. Daurisoline applied intravenously (i.v.) (bolus of 1-60 mg/kg) reduced the spontaneous activity of rat cerebellar Purkinje cells in a dose-dependent manner, a result demonstrating activity in the brain with systemic administration of the compound. While this effect reversed rapidly in about 10-20 min following bolus-application of the drug at doses of up to 30 mg/kg, a dose of 60 mg/kg consistently induced a depression of respiration followed by death of the animals. Daurisoline administered at 10-30 mg/kg did not prevent electroshock-induced convulsions in mice or rats, nor did it reduce the neuronal damage in hippocampal slices induced by a hypoxic/hypoglycemic insult in vitro by MCA occlusion in vivo. These observations do not support the hypothesis that P-type Ca2+ channels are promising drug targets for the acute treatment of epileptic convulsions and/or ischemic stroke

    Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people

    No full text
    The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10−8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits
    corecore