12 research outputs found

    Microplastics Uptake and Egestion Dynamics in Pacific Oysters, Magallana gigas (Thunberg, 1793), Under Controlled Conditions

    Get PDF
    Microplastics debris (< 5 mm) are increasingly abundant in the marine environment, therefore, potentially becoming a growing threat for different marine organisms. Through aquatic animals, these can enter in the human food chain, and can be perceived as a risk for consumers’ health. Different studies report the presence of particles in marketable shellfish including the world wide commercially grown Pacific oyster Magallana gigas (Thunberg, 1793). The aim of this study is to examine the potential risk of microplastics entering in the human food chain through this shellfish species, investigating the dynamics of the uptake, egestion (faeces) and rejection (pseudofaeces) of microplastics in Pacific oysters under controlled conditions. M. gigas collected from a farm in the San Teodoro lagoon (Italy), were exposed to 60 fluorescent orange polystyrene particles L−1 of known sizes (100, 250 and 500 μm). The uptake of each particle size was 19.4 ± 1.1%, 19.4 ± 2% and 12.9 ± 2% respectively. After exposure M. gigas were left to depurate for 72 h, during which 84.6 ± 2% of the particles taken up were released whilst 15.4 ± 2% were retained inside the shell cavity. No microplastic particles were found in the animals’ soft tissues. The results of this study, suggest that depuration is an effective method to reduce presence of large microplastic particles, in the size range 100–500 μm, in M. gigas. Importantly, the data suggests that the burden that could theoretically be up taken by consumers from these shellfish is negligible when compared to other routes

    Figure 16: Scanning electron micrographs of mega- and microspores of S. zartmanii

    Get PDF
    We describe four new species in the genus Selaginella (i.e., S. agioneuma, S. magnafornensis, S. ventricosa, and S. zartmanii) from Brazil, all presently classified in subg. Stachygynandrum. For each of the new taxa we discuss taxonomic affinities and provide information on habitat, distribution, and conservation status. In addition, line drawings and scanning electron microscope (SEM) images of stems sections, leaves, and spores (when present) are included. Selaginella agioneuma and S. magnafornensis are from the State of Espíritu Santo where they inhabit premontane to montane Atlantic rain forests in the Reserva Biológica Augusto Ruschi and Parque Estadual Forno Grande, respectively. Selaginella ventricosa was collected in upper montane forests at Parque Nacional Serra da Mocidade, State of Roraima and S. zartmanii in premontane Amazon rain forests on upper Rio Negro at Mpio. São Gabriel da Cachoeira, Amazonas State in both Serra Curicuriari and the Morro dos Seis Lagos Biological Reserve
    corecore