1,578 research outputs found

    Screening for Autism Spectrum Disorders-Validation of the Portuguese Version of the Social Communication Questionnaire

    Get PDF
    There are no assessment and screening tools for Autism Spectrum Disorders (ASD) validated for the Portuguese population. The Social Communication Questionnaire (SCQ) is an useful screening tool of ASD diagnosis. The main objectives of our study were to produce a Portuguese version of the SCQ (SCQ-PF), study its internal consistency, sensitivity and specificity in order to evaluate its validity as a screening instrument for ASD. We also wanted to study the impact of intellectual disability and verbal impairment and other mental disorders on SCQ-PF psychometric properties. The study included 211 children and adolescents, aged 4-17, divided in three groups: ASD Group (n = 96), Other Mental Disorders Group (OMD) (n = 63) and No Mental Disorders (NMD) Group (n = 52). Parents or other primary caregiver provided information on the SCQ items. The SCQ-PF score was significantly higher in the ASD group than in the other groups (p < 0.001). As to internal consistency, Cronbach's alpha was 87%. ASD subjects were distinguished from subjects without ASD (OMD and NMD Groups) and the area under the curve (AUC) was 0.897 (95% Confidence Interval: 0.852-0.943), for a cutoff of 14, which yielded the highest AUC, with values of sensitivity and specificity 0.76 and 0.93, respectively. These findings show that SCQ- PF with a cutoff of 14 is an acceptable and useful screening tool for ASD in the Portuguese population

    Structural Batteries: A Review

    Get PDF
    Structural power composites stand out as a possible solution to the demands of the modern transportation system of more efficient and eco-friendly vehicles. Recent studies demonstrated the possibility to realize these components endowing high-performance composites with electrochemical properties. The aim of this paper is to present a systematic review of the recent developments on this more and more sensitive topic. Two main technologies will be covered here: (1) the integration of commercially available lithium-ion batteries in composite structures, and (2) the fabrication of carbon fiber-based multifunctional materials. The latter will be deeply analyzed, describing how the fibers and the polymeric matrices can be synergistically combined with ionic salts and cathodic materials to manufacture monolithic structural batteries. The main challenges faced by these emerging research fields are also addressed. Among them, the maximum allowable curing cycle for the embedded configuration and the realization that highly conductive structural electrolytes for the monolithic solution are noteworthy. This work also shows an overview of the multiphysics material models developed for these studies and provides a clue for a possible alternative configuration based on solid-state electrolytes

    Formation of beads-on-a-string structures during break-up of viscoelastic filaments

    Get PDF
    Break-up of viscoelastic filaments is pervasive in both nature and technology. If a filament is formed by placing a drop of saliva between a thumb and forefinger and is stretched, the filament’s morphology close to break-up corresponds to beads of several sizes interconnected by slender threads. Although there is general agreement that formation of such beads-on-a-string (BOAS) structures occurs only for viscoelastic fluids, the underlying physics remains unclear and controversial. The physics leading to the formation of BOAS structures is probed by numerical simulation. Computations reveal that viscoelasticity alone does not give rise to a small, satellite bead between two much larger main beads but that inertia is required for its formation. Viscoelasticity, however, enhances the growth of the bead and delays pinch-off, which leads to a relatively long-lived beaded structure. We also show for the first time theoretically that yet smaller, sub-satellite beads can also form as seen in experiments.National Science Foundation (U.S.). ERC-SOPS (EEC-0540855)Nanoscale Interdisciplinary Research Thrust on 'Directed Self-assembly of Suspended Polymer Fibers' (NSF-DMS0506941

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Detection of maturity and ligament injury using magic angle directional imaging

    Get PDF
    Purpose: To investigate whether magnetic field–related anisotropies of collagen may be correlated with postmortem findings in animal models. Methods: Optimized scan planning and new MRI data‐processing methods were proposed and analyzed using Monte Carlo simulations. Six caprine and 10 canine knees were scanned at various orientations to the main magnetic field. Image intensities in segmented voxels were used to compute the orientation vectors of the collagen fibers. Vector field and tractography plots were computed. The Alignment Index was defined as a measure of orientation distribution. The knees were subsequently assessed by a specialist orthopedic veterinarian, who gave a pathological diagnosis after having dissected and photographed the joints. Results: Using 50% less scans than reported previously can lead to robust calculation of fiber orientations in the presence of noise, with much higher accuracy. The 6 caprine knees were found to range from very immature ( 3 years). Mature specimens exhibited significantly more aligned collagen fibers in their patella tendons compared with the immature ones. In 2 of the 10 canine knees scanned, partial cranial caudal ligament tears were identified from MRI and subsequently confirmed with encouragingly high consistency of tractography, Alignment Index, and dissection results. Conclusion: This method can be used to detect injury such as partial ligament tears, and to visualize maturity‐related changes in the collagen structure of tendons. It can provide the basis for new, noninvasive diagnostic tools in combination with new scanner configurations that allow less‐restricted field orientations

    Health Education through Analogies: Preparation of a Community for Clinical Trials of a Vaccine against Hookworm in an Endemic Area of Brazil

    Get PDF
    Conducting clinical trials of new vaccines in rural, resource-limited areas can be challenging since the people living in these areas often have high levels of illiteracy, little experience with clinical research, and limited access to routine health care. Especially difficult is obtaining informed consent for participation in this type of research and ensuring that potential participants adequately understand the potential risks and benefits of participation. The researchers have been preparing a remote field site in the northeastern part of the state of Minas Gerais, Brazil, for clinical trials of experimental hookworm vaccines. A special educational video was designed based on the method of analogies to introduce new scientific concepts related to the researchers' work and to improve knowledge of hookworm, a disease that is highly prevalent in their community. A questionnaire was administered both before and after the video was shown to a group of adults at the field site, which demonstrated the effectiveness of the video in disseminating knowledge about hookworm infection and about the vaccine being developed. Therefore, even in a rural, resource-limited area, educational tools can be specially designed that significantly improve understanding and therefore the likelihood of obtaining truly informed consent for participation in clinical research

    The Essential Nucleolar Yeast Protein Nop8p Controls the Exosome Function during 60S Ribosomal Subunit Maturation

    Get PDF
    The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing

    How to juggle priorities? An interactive tool to provide quantitative support for strategic patient-mix decisions: an ophthalmology case

    Get PDF
    An interactive tool was developed for the ophthalmology department of the Academic Medical Center to quantitatively support management with strategic patient-mix decisions. The tool enables management to alter the number of patients in various patient groups and to see the consequences in terms of key performance indicators. In our case study, we focused on the bottleneck: the operating room. First, we performed a literature review to identify all factors that influence an operating room's utilization rate. Next, we decided which factors were relevant to our study. For these relevant factors, two quantitative methods were applied to quantify the impact of an individual factor: regression analysis and computer simulation. Finally, the average duration of an operation, the number of cancellations due to overrun of previous surgeries, and the waiting time target for elective patients all turned out to have significant impact. Accordingly, for the case study, the interactive tool was shown to offer management quantitative decision support to act proactively to expected alterations in patient-mix. Hence, management can anticipate the future situation, and either alter the expected patient-mix or expand capacity to ensure that the key performance indicators will be met in the future
    corecore