619 research outputs found
A nonlinear isobologram model with Box-Cox transformation to both sides for chemical mixtures.
The linear logistical isobologram is a commonly used and powerful graphical and statistical tool for analyzing the combined effects of simple chemical mixtures. In this paper a nonlinear isobologram model is proposed to analyze the joint action of chemical mixtures for quantitative dose-response relationships. This nonlinear isobologram model incorporates two additional new parameters, Ymin and Ymax, to facilitate analysis of response data that are not constrained between 0 and 1, where parameters Ymin and Ymax represent the minimal and the maximal observed toxic response. This nonlinear isobologram model for binary mixtures can be expressed as [formula: see text] In addition, a Box-Cox transformation to both sides is introduced to improve the goodness of fit and to provide a more robust model for achieving homogeneity and normality of the residuals. Finally, a confidence band is proposed for selected isobols, e.g., the median effective dose, to facilitate graphical and statistical analysis of the isobologram. The versatility of this approach is demonstrated using published data describing the toxicity of the binary mixtures of citrinin and ochratoxin as well as a new experimental data from our laboratory for mixtures of mercury and cadmium
High Reynolds number test of a NACA 651-213, a equals 0.5 airfoil at transonic speeds
Wind-Tunnel tests were conducted in the Lockheed-Georgia Company's compressible flow facility to determine the transonic two-dimensional aerodynamic characteristics of a NACA 65 sub 1-213 a = 0.50 airfoil. The results are correlated with data obtained in the NASA-Langley 8-foot transonic pressure tunnel and the NAE high Reynolds number 15x60-inch two-dimensional test facility. The tests were conducted over a Mach number range from 0.60 to 0.80 and an angle of attack range from -1 deg to 8 deg. Reynolds numbers, based on the airfoil chord, were varied
A simultaneous XMM-Newton and BeppoSAX observation of the archetypal Broad Line Seyfert 1 galaxy NGC 5548
We report the spectral analysis of a long XMM-Newton observation of the
well-studied, moderate luminosity Broad Line Seyfert 1 galaxy NGC 5548. The
source was at an historically average brightness and we find the hard (3-10
keV) spectrum can be well fitted by a power law of photon index gamma ~ 1.75,
together with reflection. The only feature in the hard X-ray spectrum is a
narrow emission line near 6.4 keV, with an equivalent width of ~ 60 eV. The
energy and strength of this line is consistent with fluorescence from `neutral'
iron distant from the central continuum source. We find no evidence for a broad
Fe K line, with an upper limit well below previous reports, suggesting the
inner accretion disc is now absent or highly ionised. The addition of
simultaneous BeppoSAX data allows the analysis to be extended to 200 keV,
yielding important constraints on the total reflection. Extrapolation of the
hard X-ray power law down to 0.3 keV shows a clear `soft excess' below ~ 0.7
keV. After due allowance for the effects of a complex warm absorber, measured
with the XMM-Newton RGS, we find the soft excess is better described as a
smooth upward curvature in the continuum flux below ~ 2 keV. The soft excess
can be modelled either by Comptonised thermal emission or by enhanced
reflection from the surface of a highly ionised disc.Comment: 9 pages, 11 figures, accepted by MNRAS; minor changes to text and
figure
Fe K emission and absorption features in XMM-Newton spectra of Mkn 766 - evidence for reprocessing in flare ejecta
We report on the analysis of a long XMM-Newton EPIC observation in 2001 May
of the Narrow Line Seyfert 1 galaxy Mkn 766. The 3-11 keV spectrum exhibits a
moderately steep power law continuum, with a broad emission line at ~6.7 keV,
probably blended with a narrow line at ~6.4 keV, and a broad absorption trough
above ~8.7 keV. We identify both broad spectral features with reprocessing in
He-like Fe. An earlier XMM-Newton observation of Mkn 766 in 2000 May, when the
source was a factor ~2 fainter, shows a similar broad emission line, but with a
slightly flatter power law and absorption at a lower energy. In neither
observation do we find a requirement for the previously reported broad 'red
wing' to the line and hence of reflection from the innermost accretion disc.
More detailed examination of the longer XMM-Newton observation reveals evidence
for rapid spectral variability in the Fe K band, apparently linked with the
occurrence of X-ray 'flares'. A reduction in the emission line strength and
increased high energy absorption during the X-ray flaring suggests that these
transient effects are due to highly ionised ejecta associated with the flares.
Simple scaling from the flare avalanche model proposed for the luminous QSO PDS
456 (Reeves etal. 2002) confirms the feasibility of coherent flaring being the
cause of the strong peaks seen in the X-ray light curve of \mkn.Comment: 9 pages, 11 figures, submitted to MNRA
Extreme X-ray variability in the luminous quasar PDS 456
We present evidence from Beppo-SAX and XMM-Newton of extreme X-ray
variability in the high luminosity radio-quiet quasar PDS 456, the most
luminous known AGN at z<0.3. Repeated X-ray flaring is found in PDS 456, over
the duration of the 340 ksec long Beppo-SAX observation. The X-ray flux doubles
in just 30 ksec, whilst the total energy output of the flaring events is as
high as 10^51 erg. Under the assumption of isotropic emission at the Eddington
limit, this implies that the size of the X-ray emitting region in PDS 456 is
less than 3 Schwarzschild radii, for a 10^9 solar mass black hole. From the
rates of change of luminosity observed during the X-ray flares, we calculate
lower limits for the radiative efficiency between 0.06 and 0.41, implying that
accretion onto a Kerr black hole is likely in PDS 456. We suggest that the
rapid variability is from X-ray flares produced through magnetic reconnection
above the disc and calculate that the energetics and timescale of the flares
are plausible if the quasar is accreting near to the maximum Eddington rate. A
similar mechanism may account for the extreme rapid X-ray variability observed
in many Narrow Line Seyfert 1s. In the case of PDS 456, we show that the X-ray
flaring could be reproduced through a self-induced cascade of about 1000
individual flares over a timescale of the order 1 day.Comment: 5 pages. Accepted for publication in MNRAS Letter
Suzaku observations of Markarian 335: evidence for a distributed reflector
We report on a 151 ks net exposure Suzaku observation of the Narrow Line
Seyfert 1 galaxy Mrk 335. The 0.5-40 keV spectrum contains a broad Fe line, a
strong soft excess below about 2 keV and a Compton hump around 20-30 keV. We
find that a model consisting of a power law and two reflectors provides the
best fit to the time-averaged spectrum. In this model, an ionized, heavily
blurred, inner reflector produces most of the soft excess, while an almost
neutral outer reflector (outside ~40 r_g) produces most of the Fe line
emission. The spectral variability of the observation is characterised by
spectral hardening at very low count rates. In terms of our power-law +
two-reflector model it seems like this hardening is mainly caused by pivoting
of the power law. The rms spectrum of the entire observation has the curved
shape commonly observed in AGN, although the shape is significantly flatter
when an interval which does not contain any deep dip in the lightcurve is
considered. We also examine a previous 133 ks XMM-Newton observation of Mrk
335. We find that the XMM-Newton spectrum can be fitted with a similar
two-reflector model as the Suzaku data and we confirm that the rms spectrum of
the observation is flat. The flat rms spectra, as well as the high-energy data
from the Suzaku PIN detector, disfavour an absorption origin for the soft
excess in Mrk 335.Comment: 13 pages, 13 figures. Accepted for publication in MNRA
The light curve of a transient X-ray source
The Ariel-V satellite monitored the X-ray light curve of A1524-62 almost continuously from 40 days prior to maximum light until its disappearance below the effective experimental sensitivity. The source exhibited maximum light on approximately 4 December 1974, at a level of 0.9 the apparent magnitude of the Crab Nebula in the energy band 3-6 keV. Although similar to previously reported transient sources with a decay time constant of approximately 2 months, the source exhibited an extended, variable pre-flare on-state of about 1 month at a level of greater than approximately 0.1 maximum light. The four bright (greater than 0.2 of the Crab Nebula) transient sources observed during the first half-year of Ariel-V operation are indicative of a galactic disk distribution, and a luminosity at maximum in excess of 10 to the 37th power ergs/sec
- …