We report on a 151 ks net exposure Suzaku observation of the Narrow Line
Seyfert 1 galaxy Mrk 335. The 0.5-40 keV spectrum contains a broad Fe line, a
strong soft excess below about 2 keV and a Compton hump around 20-30 keV. We
find that a model consisting of a power law and two reflectors provides the
best fit to the time-averaged spectrum. In this model, an ionized, heavily
blurred, inner reflector produces most of the soft excess, while an almost
neutral outer reflector (outside ~40 r_g) produces most of the Fe line
emission. The spectral variability of the observation is characterised by
spectral hardening at very low count rates. In terms of our power-law +
two-reflector model it seems like this hardening is mainly caused by pivoting
of the power law. The rms spectrum of the entire observation has the curved
shape commonly observed in AGN, although the shape is significantly flatter
when an interval which does not contain any deep dip in the lightcurve is
considered. We also examine a previous 133 ks XMM-Newton observation of Mrk
335. We find that the XMM-Newton spectrum can be fitted with a similar
two-reflector model as the Suzaku data and we confirm that the rms spectrum of
the observation is flat. The flat rms spectra, as well as the high-energy data
from the Suzaku PIN detector, disfavour an absorption origin for the soft
excess in Mrk 335.Comment: 13 pages, 13 figures. Accepted for publication in MNRA