577 research outputs found

    Frequency shifts of photoassociative spectra of ultracold metastable Helium atoms : a new measurement of the s-wave scattering length

    Full text link
    We observe light-induced frequency shifts in one-color photoassociative spectra of magnetically trapped 4^4He^* atoms in the metastable 23S12^3S_1 state. A pair of ultracold spin-polarized 23S12^3S_1 helium atoms is excited into a molecular bound state in the purely long range 0u+0_u^+ potential connected to the 23S123P02^3S_1 - 2^3P_0 asymptote. The shift arises from the optical coupling of the molecular excited bound state with the scattering states and the bound states of two colliding 23S12^3S_1 atoms. We measure the frequency-shifts for several ro-vibrational levels in the 0u+0^+_u potential and find a linear dependence on the photoassociation laser intensity. Comparison with a theoretical analysis provides a good indication for the s-wave scattering length aa of the quintet (5Σg+^5\Sigma_g^+) potential, a=7.2±0.6a=7.2\pm 0.6 nm, which is significantly lower than most previous results obtained by non-spectroscopic methods.Comment: 7 pages, 4 figure

    Accurate determination of the scattering length of metastable Helium atoms using dark resonances between atoms and exotic molecules

    Full text link
    We present a new measurement of the s-wave scattering length a of spin-polarized helium atoms in the 2^3S_1 metastable state. Using two-photon photoassociation spectroscopy and dark resonances we measure the energy E_{v=14}= -91.35 +/- 0.06 MHz of the least bound state v=14 in the interaction potential of the two atoms. We deduce a value of a = 7.512 +/- 0.005 nm, which is at least one hundred times more precise than the best previous determinations and is in disagreement with some of them. This experiment also demonstrates the possibility to create exotic molecules binding two metastable atoms with a lifetime of the order of 1 microsecond.Comment: 4 pages, 4 figure

    Influence of Thermal Treatment on The Electronic Properties of ITO Thin Films Obtained by RF Cathodic Pulverization. Study of Solar Cells Based on Silicon/(RF Sputtered) ITO Junctions

    Get PDF
    ITO (Indium Tin Oxide) thin films obtained by R.F cathodic sputtering have been studied. The influence of thermal treatment on the electronic properties of the films has been particularly investigated. Electrical measurements were performed between 95 and 600 K. Free carriers concentration in the film were measured by Hall effect coefficient. Optical indices were determined by computer drawing of charts allowing to simplify Manifacier method

    Carrier drift velocity and edge magnetoplasmons in graphene

    Get PDF
    We investigate electron dynamics at the graphene edge by studying the propagation of collective edge magnetoplasmon (EMP) excitations. By timing the travel of narrow wave-packets on picosecond time scales around exfoliated samples, we find chiral propagation with low attenuation at a velocity which is quantized on Hall plateaus. We extract the carrier drift contribution from the EMP propagation and find it to be slightly less than the Fermi velocity, as expected for an abrupt edge. We also extract the characteristic length for Coulomb interaction at the edge and find it to be smaller than for soft, depletion edge systems.Comment: 5 pages, 3 figures of main text and 6 pages, 6 figures of supplemental materia

    Resistive switching and charge transport mechanisms in ITO/ZnO/p-Si devices

    Full text link
    [EN] The resistive switching properties of ITO/ZnO/p-Si devices have been studied, which present well-defined resistance states with more than five orders of magnitude difference in current. Both the high resistance state (HRS) and the low resistance state (LRS) were induced by either sweeping or pulsing the voltage, observing some differences in the HRS. Finally, the charge transport mechanisms dominating the pristine, HRS, and LRS states have been analyzed in depth, and the obtained structural parameters suggest a partial re-oxidation of the conductive nanofilaments and a reduction of the effective conductive area.This work was financially supported by the Spanish Ministry of Economy and Competitiveness (Project Nos. TEC2012-38540-C02-01 and TEC2016-76849-C2-1-R). O.B. also acknowledges the subprogram "Ayudas para Contratos Predoctorales para la Formacion de Doctores" of the Spanish Ministry of Economy and Competitiveness for economical support. X.P., C.L., and C.G. are grateful to C. Frilay for his expertise in the maintenance of the sputtering kit used for the growth of the ZnO films.Blázquez, O.; Frieiro, J.; López-Vidrier, J.; Guillaume, C.; Portier, X.; Labbé, C.; Sanchis Kilders, P.... (2018). Resistive switching and charge transport mechanisms in ITO/ZnO/p-Si devices. Applied Physics Letters. 113(18):1-6. https://doi.org/10.1063/1.50469111611318I. G. Baek , M. S. Lee , S. Sco , M. J. Lee , D. H. Seo , D.S. Suh , J. C. Park , S. O. Park , H. S. Kim , I. K. Yoo , U.I. Chung , and J. T. Moon , in IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004 ( IEEE, 2004), pp. 587–590.Waser, R., & Aono, M. (2007). Nanoionics-based resistive switching memories. Nature Materials, 6(11), 833-840. doi:10.1038/nmat2023Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., … Aono, M. (2005). A nonvolatile programmable solid-electrolyte nanometer switch. IEEE Journal of Solid-State Circuits, 40(1), 168-176. doi:10.1109/jssc.2004.837244Strukov, D. B., & Likharev, K. K. (2005). CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology, 16(6), 888-900. doi:10.1088/0957-4484/16/6/045Mehonic, A., Cueff, S., Wojdak, M., Hudziak, S., Jambois, O., Labbé, C., … Kenyon, A. J. (2012). Resistive switching in silicon suboxide films. Journal of Applied Physics, 111(7), 074507. doi:10.1063/1.3701581Mehonic, A., Vrajitoarea, A., Cueff, S., Hudziak, S., Howe, H., Labbé, C., … Kenyon, A. J. (2013). Quantum Conductance in Silicon Oxide Resistive Memory Devices. Scientific Reports, 3(1). doi:10.1038/srep02708Pickett, M. D., Medeiros-Ribeiro, G., & Williams, R. S. (2012). A scalable neuristor built with Mott memristors. Nature Materials, 12(2), 114-117. doi:10.1038/nmat3510Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., & Lu, W. (2010). Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters, 10(4), 1297-1301. doi:10.1021/nl904092hVescio, G., Crespo-Yepes, A., Alonso, D., Claramunt, S., Porti, M., Rodriguez, R., … Aymerich, X. (2017). Inkjet Printed HfO2-Based ReRAMs: First Demonstration and Performance Characterization. IEEE Electron Device Letters, 38(4), 457-460. doi:10.1109/led.2017.2668599Valov, I. (2013). Redox-Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale. ChemElectroChem, 1(1), 26-36. doi:10.1002/celc.201300165Martín, G., González, M. B., Campabadal, F., Peiró, F., Cornet, A., & Estradé, S. (2017). Transmission electron microscopy assessment of conductive-filament formation in Ni–HfO2–Si resistive-switching operational devices. Applied Physics Express, 11(1), 014101. doi:10.7567/apex.11.014101Simanjuntak, F. M., Panda, D., Wei, K.-H., & Tseng, T.-Y. (2016). Status and Prospects of ZnO-Based Resistive Switching Memory Devices. Nanoscale Research Letters, 11(1). doi:10.1186/s11671-016-1570-yKim, J., & Yong, K. (2011). Mechanism Study of ZnO Nanorod-Bundle Sensors for H2S Gas Sensing. The Journal of Physical Chemistry C, 115(15), 7218-7224. doi:10.1021/jp110129fYuan, Q., Zhao, Y.-P., Li, L., & Wang, T. (2009). Ab Initio Study of ZnO-Based Gas-Sensing Mechanisms: Surface Reconstruction and Charge Transfer. The Journal of Physical Chemistry C, 113(15), 6107-6113. doi:10.1021/jp810161jSeo, J. W., Park, J.-W., Lim, K. S., Yang, J.-H., & Kang, S. J. (2008). Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Applied Physics Letters, 93(22), 223505. doi:10.1063/1.3041643Rahaman, S. Z., Maikap, S., Chiu, H.-C., Lin, C.-H., Wu, T.-Y., Chen, Y.-S., … Tsai, M.-J. (2010). Bipolar Resistive Switching Memory Using Cu Metallic Filament in Ge[sub 0.4]Se[sub 0.6] Solid Electrolyte. Electrochemical and Solid-State Letters, 13(5), H159. doi:10.1149/1.3339449Simanjuntak, F. M., Panda, D., Tsai, T.-L., Lin, C.-A., Wei, K.-H., & Tseng, T.-Y. (2015). Enhancing the memory window of AZO/ZnO/ITO transparent resistive switching devices by modulating the oxygen vacancy concentration of the top electrode. Journal of Materials Science, 50(21), 6961-6969. doi:10.1007/s10853-015-9247-ySimanjuntak, F. M., Prasad, O. K., Panda, D., Lin, C.-A., Tsai, T.-L., Wei, K.-H., & Tseng, T.-Y. (2016). Impacts of Co doping on ZnO transparent switching memory device characteristics. Applied Physics Letters, 108(18), 183506. doi:10.1063/1.4948598Simanjuntak, F. M., Panda, D., Tsai, T.-L., Lin, C.-A., Wei, K.-H., & Tseng, T.-Y. (2015). Enhanced switching uniformity in AZO/ZnO1−x/ITO transparent resistive memory devices by bipolar double forming. Applied Physics Letters, 107(3), 033505. doi:10.1063/1.4927284Liu, Q., Guan, W., Long, S., Jia, R., Liu, M., & Chen, J. (2008). Resistive switching memory effect of ZrO[sub 2] films with Zr[sup +] implanted. Applied Physics Letters, 92(1), 012117. doi:10.1063/1.2832660Shuai, Y., Zhou, S., Bürger, D., Helm, M., & Schmidt, H. (2011). Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt. Journal of Applied Physics, 109(12), 124117. doi:10.1063/1.3601113Chen, J.-Y., Hsin, C.-L., Huang, C.-W., Chiu, C.-H., Huang, Y.-T., Lin, S.-J., … Chen, L.-J. (2013). Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories. Nano Letters, 13(8), 3671-3677. doi:10.1021/nl4015638Hubbard, W. A., Kerelsky, A., Jasmin, G., White, E. R., Lodico, J., Mecklenburg, M., & Regan, B. C. (2015). Nanofilament Formation and Regeneration During Cu/Al2O3 Resistive Memory Switching. Nano Letters, 15(6), 3983-3987. doi:10.1021/acs.nanolett.5b00901Liu, Q., Sun, J., Lv, H., Long, S., Yin, K., Wan, N., … Liu, M. (2012). Real-Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide-Electrolyte-Based ReRAM. Advanced Materials, 24(14), 1844-1849. doi:10.1002/adma.201104104Zhu, X., Wu, H.-Z., Qiu, D.-J., Yuan, Z., Jin, G., Kong, J., & Shen, W. (2010). Photoluminescence and resonant Raman scattering in N-doped ZnO thin films. Optics Communications, 283(13), 2695-2699. doi:10.1016/j.optcom.2010.03.006Cerqueira, M. F., Vasilevskiy, M. I., Oliveira, F., Rolo, A. G., Viseu, T., Ayres de Campos, J., … Correia, R. (2011). Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputtering. Journal of Physics: Condensed Matter, 23(33), 334205. doi:10.1088/0953-8984/23/33/334205Marchewka, A., Roesgen, B., Skaja, K., Du, H., Jia, C.-L., Mayer, J., … Menzel, S. (2015). Nanoionic Resistive Switching Memories: On the Physical Nature of the Dynamic Reset Process. Advanced Electronic Materials, 2(1), 1500233. doi:10.1002/aelm.201500233Krzywiecki, M., Grządziel, L., Sarfraz, A., Iqbal, D., Szwajca, A., & Erbe, A. (2015). Zinc oxide as a defect-dominated material in thin films for photovoltaic applications – experimental determination of defect levels, quantification of composition, and construction of band diagram. Physical Chemistry Chemical Physics, 17(15), 10004-10013. doi:10.1039/c5cp00112aMurgatroyd, P. N. (1970). Theory of space-charge-limited current enhanced by Frenkel effect. Journal of Physics D: Applied Physics, 3(2), 151-156. doi:10.1088/0022-3727/3/2/308Electron emission in intense electric fields. (1928). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119(781), 173-181. doi:10.1098/rspa.1928.0091Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., … Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 041301. doi:10.1063/1.1992666Kaidashev, E. M., Lorenz, M., von Wenckstern, H., Rahm, A., Semmelhack, H.-C., Han, K.-H., … Grundmann, M. (2003). High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters, 82(22), 3901-3903. doi:10.1063/1.1578694Gall, D. (2016). Electron mean free path in elemental metals. Journal of Applied Physics, 119(8), 085101. doi:10.1063/1.4942216Lee, W., Park, J., Kim, S., Woo, J., Shin, J., Choi, G., … Hwang, H. (2012). High Current Density and Nonlinearity Combination of Selection Device Based on TaOx/TiO2/TaOx Structure for One Selector–One Resistor Arrays. ACS Nano, 6(9), 8166-8172. doi:10.1021/nn3028776Kwon, D.-H., Kim, K. M., Jang, J. H., Jeon, J. M., Lee, M. H., Kim, G. H., … Hwang, C. S. (2010). Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 5(2), 148-153. doi:10.1038/nnano.2009.456Choi, B. J., Torrezan, A. C., Strachan, J. P., Kotula, P. G., Lohn, A. J., Marinella, M. J., … Yang, J. J. (2016). High‐Speed and Low‐Energy Nitride Memristors. Advanced Functional Materials, 26(29), 5290-5296. doi:10.1002/adfm.201600680Sun, X. (2006). Designing efficient field emission into ZnO. SPIE Newsroom. doi:10.1117/2.1200602.0101Hu, C., Wang, Q., Bai, S., Xu, M., He, D., Lyu, D., & Qi, J. (2017). The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory. Applied Physics Letters, 110(7), 073501. doi:10.1063/1.4976512Gul, F., & Efeoglu, H. (2017). Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor. Superlattices and Microstructures, 101, 172-179. doi:10.1016/j.spmi.2016.11.043Blázquez, O., Martín, G., Camps, I., Mariscal, A., López-Vidrier, J., Ramírez, J. M., … Garrido, B. (2018). Memristive behaviour of Si-Al oxynitride thin films: the role of oxygen and nitrogen vacancies in the electroforming process. Nanotechnology, 29(23), 235702. doi:10.1088/1361-6528/aab744Bersuker, G., Gilmer, D. C., Veksler, D., Kirsch, P., Vandelli, L., Padovani, A., … Nafría, M. (2011). Metal oxide resistive memory switching mechanism based on conductive filament properties. Journal of Applied Physics, 110(12), 124518. doi:10.1063/1.367156

    Characterization of the proneural gene regulatory network during mouse telencephalon development

    Get PDF
    BACKGROUND: The proneural proteins Mash1 and Ngn2 are key cell autonomous regulators of neurogenesis in the mammalian central nervous system, yet little is known about the molecular pathways regulated by these transcription factors. RESULTS: Here we identify the downstream effectors of proneural genes in the telencephalon using a genomic approach to analyze the transcriptome of mice that are either lacking or overexpressing proneural genes. Novel targets of Ngn2 and/or Mash1 were identified, such as members of the Notch and Wnt pathways, and proteins involved in adhesion and signal transduction. Next, we searched the non-coding sequence surrounding the predicted proneural downstream effector genes for evolutionarily conserved transcription factor binding sites associated with newly defined consensus binding sites for Ngn2 and Mash1. This allowed us to identify potential novel co-factors and co-regulators for proneural proteins, including Creb, Tcf/Lef, Pou-domain containing transcription factors, Sox9, and Mef2a. Finally, a gene regulatory network was delineated using a novel Bayesian-based algorithm that can incorporate information from diverse datasets. CONCLUSION: Together, these data shed light on the molecular pathways regulated by proneural genes and demonstrate that the integration of experimentation with bioinformatics can guide both hypothesis testing and hypothesis generation

    Transformation kinetics of alloys under non-isothermal conditions

    Full text link
    The overall solid-to-solid phase transformation kinetics under non-isothermal conditions has been modeled by means of a differential equation method. The method requires provisions for expressions of the fraction of the transformed phase in equilibrium condition and the relaxation time for transition as functions of temperature. The thermal history is an input to the model. We have used the method to calculate the time/temperature variation of the volume fraction of the favored phase in the alpha-to-beta transition in a zirconium alloy under heating and cooling, in agreement with experimental results. We also present a formulation that accounts for both additive and non-additive phase transformation processes. Moreover, a method based on the concept of path integral, which considers all the possible paths in thermal histories to reach the final state, is suggested.Comment: 16 pages, 7 figures. To appear in Modelling Simul. Mater. Sci. En
    corecore