1,111 research outputs found

    Magnetic field re-arrangement after prominence eruption

    Get PDF
    It has long been known that magnetic reconnection plays a fundamental role in a variety of solar events. Although mainly invoked in flare problems, large scale loops interconnecting active regions, evolving coronal hole boundaries, the solar magnetic cycle itself, provide different evidence of phenomena which involve magnetic reconnection. A further example might be given by the magnetic field rearrangement which occurs after the eruption of a prominence. Since most often a prominence reforms after its disappearance and may be observed at about the same position it occupied before erupting, the magnetic field has to undergo a temporary disruption of relax back, via reconnection, to a configuration similar to the previous one. The above sequence of events is best observable in the case of two ribbon (2-R) flares but most probably is associated with all filament eruptions. Even if the explanation of the magnetic field rearrangement after 2-R flares in terms of reconnection is generally accepted, the lack of a 3-dimensional model capable of describing the field reconfiguration, has prevented, up to now, a thorough analysis of its topology as traced by H alpha/x ray loops. A numerical technique is presented which enables oneto predict and visualize the reconnected configuration, at any time, and therefore allows one to make a significant comparison of observations and model predictions throughout the whole process

    Large-scale electric fields resulting from magnetic reconnection in the corona

    Get PDF
    The method of Forbes and Priest (2-D model) is applied to the large two-ribbon flare of July 29, 1973, for which both detailed H observations and magnetic data are available. For this flare the ribbons were long, nearly straight, and parallel to each other, and the 2-D model for the coronal field geometry may be adequate. The temporal profile E(t) is calculated and indicates that reconnection sets in at the beginning of the decay phase. From this time the electric field grows rapidly to a maximum value of about 2 V/cm within just a few minutes. Thereafter it decreases monotonically with time

    A tunable rf SQUID manipulated as flux and phase qubit

    Full text link
    We report on two different manipulation procedures of a tunable rf SQUID. First, we operate this system as a flux qubit, where the coherent evolution between the two flux states is induced by a rapid change of the energy potential, turning it from a double well into a single well. The measured coherent Larmor-like oscillation of the retrapping probability in one of the wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected upper limit of 40 GHz. Furthermore, here we also report a manipulation of the same device as a phase qubit. In the phase regime, the manipulation of the energy states is realized by applying a resonant microwave drive. In spite of the conceptual difference between these two manipulation procedures, the measured decay times of Larmor oscillation and microwave-driven Rabi oscillation are rather similar. Due to the higher frequency of the Larmor oscillations, the microwave-free qubit manipulation allows for much faster coherent operations.Comment: Proceedings of Nobel Symposium "Qubits for future quantum computers", Goeteborg, Sweden, May 25-28, 2009; to appear in Physica Script

    Deep-well ultrafast manipulation of a SQUID flux qubit

    Full text link
    Superconducting devices based on the Josephson effect are effectively used for the implementation of qubits and quantum gates. The manipulation of superconducting qubits is generally performed by using microwave pulses with frequencies from 5 to 15 GHz, obtaining a typical operating clock from 100MHz to 1GHz. A manipulation based on simple pulses in the absence of microwaves is also possible. In our system a magnetic flux pulse modifies the potential of a double SQUID qubit from a symmetric double well to a single deep well condition. By using this scheme with a Nb/AlOx/Nb system we obtained coherent oscillations with sub-nanosecond period (tunable from 50ps to 200ps), very fast with respect to other manipulating procedures, and with a coherence time up to 10ns, of the order of what obtained with similar devices and technologies but using microwave manipulation. We introduce the ultrafast manipulation presenting experimental results, new issues related to this approach (such as the use of a feedback procedure for cancelling the effect of "slow" fluctuations), and open perspectives, such as the possible use of RSFQ logic for the qubit control.Comment: 9 pages, 7 figure

    General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED

    Full text link
    We present and demonstrate a general three-step method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. We use active depletion of post-measurement photons and optimal integration weight functions on two quadratures to maximize the signal-to-noise ratio of the non-steady-state homodyne measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to optimally bias a Josephson traveling-wave parametric amplifier and to quantify different noise contributions in the readout amplification chain.Comment: 10 pages, 6 figure

    Une expérience de gestion de sapinière (Abies alba) en Calabre (Italie)

    Get PDF
    Décrit la gestion pratiquée par un propriétaire privé sur une exploitation de 1.500 ha et une entreprise familiale produisant surtout des charpentes en sapin
    • …
    corecore