984 research outputs found

    Community-based randomised controlled trial evaluating falls and osteoporosis risk management strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis-related fractures are a significant public health concern. Interventions that increase detection and treatment of osteoporosis, as well as prevention of fractures and falls, are substantially underutilized. This paper outlines the protocol for a pragmatic randomised trial of a multifaceted community-based care program aimed at optimizing the evidence-based management of falls and fractures in patients at risk.</p> <p>Design</p> <p>6-month randomised controlled study.</p> <p>Methods</p> <p>This population-based study was completed in the Algoma District of Ontario, Canada a geographically vast area with Sault Ste Marie (population 78 000) as its main city. Eligible patients were allocated to an immediate intervention protocol (IP) group, or a delayed intervention protocol (DP) group. The DP group received usual care for 6 months and then was crossed over to receive the interventions. Components of the intervention were directed at the physicians and their patients and included patient-specific recommendations for osteoporosis therapy as outlined by the clinical practice guidelines developed by Osteoporosis Canada, and falls risk assessment and treatment. Two primary outcomes were measured including implementation of appropriate osteoporosis and falls risk management. Secondary outcomes included quality of life and the number of falls, fractures, and hospital admissions over a twelve-month period. The patient is the unit of allocation and analysis. Analyses will be performed on an intention to treat basis.</p> <p>Discussion</p> <p>This paper outlines the protocol for a pragmatic randomised trial of a multi-faceted, community-based intervention to optimize the implementation of evidence based management for patients at risk for falls and osteoporosis.</p> <p>Trial Registration</p> <p>This trial has been registered with clinicaltrials.gov (ID: NCT00465387)</p

    Singlet exciton fission in solution.

    Get PDF
    Singlet exciton fission, the spin-conserving process that produces two triplet excited states from one photoexcited singlet state, is a means to circumvent the Shockley-Queisser limit in single-junction solar cells. Although the process through which singlet fission occurs is not well characterized, some local order is thought to be necessary for intermolecular coupling. Here, we report a triplet yield of 200% and triplet formation rates approaching the diffusion limit in solutions of bis(triisopropylsilylethynyl (TIPS)) pentacene. We observe a transient bound excimer intermediate, formed by the collision of one photoexcited and one ground-state TIPS-pentacene molecule. The intermediate breaks up when the two triplets separate to each TIPS-pentacene molecule. This efficient system is a model for future singlet-fission materials and for disordered device components that produce cascades of excited states from sunlight.B.J.W. was supported by a Herchel Smith Research Fellowship. A.J.M. received funding from a Marie Curie Scholarship. D.B. is a FNRS Research Director. Both A.J.M and D.B. acknowledge support from the European Community’s Initial Training Network SUPERIOR (PITN-GA-2009-238177). Further funding for this project came from the Engineering and Physical Sciences Research Council (EPSRC) and a pump-prime grant from the Winton Programme for the Physics of Sustainability.This is the accepted version of an article originally published in Nature Chemistry 5, 1019–1024 and available online at http://www.nature.com/nchem/journal/v5/n12/full/nchem.1801.html. Nature Publishing Group's conditions for reuse are detailed at http://www.nature.com/authors/policies/license.html

    Inconsistent boundaries

    Get PDF
    Research on this paper was supported by a grant from the Marsden Fund, Royal Society of New Zealand.Mereotopology is a theory of connected parts. The existence of boundaries, as parts of everyday objects, is basic to any such theory; but in classical mereotopology, there is a problem: if boundaries exist, then either distinct entities cannot be in contact, or else space is not topologically connected (Varzi in Noûs 31:26–58, 1997). In this paper we urge that this problem can be met with a paraconsistent mereotopology, and sketch the details of one such approach. The resulting theory focuses attention on the role of empty parts, in delivering a balanced and bounded metaphysics of naive space.PostprintPeer reviewe

    Training simulated patients: evaluation of a training approach using self-assessment and peer/tutor feedback to improve performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most medical schools use simulated patients (SPs) for teaching. In this context the authenticity of role play and quality of feedback provided by SPs is of paramount importance. The available literature on SP training mostly addresses instructor led training where the SPs are given direction on their roles. This study focuses on the use of peer and self evaluation as a tool to train SPs.</p> <p>Methods</p> <p>SPs at the medical school participated in a staff development and training programme which included a) self-assessment of their performance while observing video-tapes of their role play using a structured guide and b) peer group assessment of their performance under tutor guidance. The pre and post training performance in relation to authenticity of role play and quality of feedback was blindly assessed by students and tutors using a validated instrument and the scores were compared. A focus group discussion and a questionnaire assessed acceptability of the training programme by the SPs.</p> <p>Results</p> <p>The post-training performance assessment scores were significantly higher (p < 0.05) than the pre-training scores. The degree of improvement in the quality of feedback provided to students was more when compared to the improvement of role play. The acceptability of the training by the SPs was very satisfactory scoring an average of 7.6 out of 10. The majority of the SPs requested the new method of training to be included in their current training programme as a regular feature.</p> <p>Conclusion</p> <p>Use of structured self-reflective and peer-interactive, practice based methods of SP training is recommended to improve SP performance. More studies on these methods of training may further refine SP training and lead to improvement of SP performance which in turn may positively impact medical education.</p

    Multivariable risk prediction can greatly enhance the statistical power of clinical trial subgroup analysis

    Get PDF
    BACKGROUND: When subgroup analyses of a positive clinical trial are unrevealing, such findings are commonly used to argue that the treatment's benefits apply to the entire study population; however, such analyses are often limited by poor statistical power. Multivariable risk-stratified analysis has been proposed as an important advance in investigating heterogeneity in treatment benefits, yet no one has conducted a systematic statistical examination of circumstances influencing the relative merits of this approach vs. conventional subgroup analysis. METHODS: Using simulated clinical trials in which the probability of outcomes in individual patients was stochastically determined by the presence of risk factors and the effects of treatment, we examined the relative merits of a conventional vs. a "risk-stratified" subgroup analysis under a variety of circumstances in which there is a small amount of uniformly distributed treatment-related harm. The statistical power to detect treatment-effect heterogeneity was calculated for risk-stratified and conventional subgroup analysis while varying: 1) the number, prevalence and odds ratios of individual risk factors for risk in the absence of treatment, 2) the predictiveness of the multivariable risk model (including the accuracy of its weights), 3) the degree of treatment-related harm, and 5) the average untreated risk of the study population. RESULTS: Conventional subgroup analysis (in which single patient attributes are evaluated "one-at-a-time") had at best moderate statistical power (30% to 45%) to detect variation in a treatment's net relative risk reduction resulting from treatment-related harm, even under optimal circumstances (overall statistical power of the study was good and treatment-effect heterogeneity was evaluated across a major risk factor [OR = 3]). In some instances a multi-variable risk-stratified approach also had low to moderate statistical power (especially when the multivariable risk prediction tool had low discrimination). However, a multivariable risk-stratified approach can have excellent statistical power to detect heterogeneity in net treatment benefit under a wide variety of circumstances, instances under which conventional subgroup analysis has poor statistical power. CONCLUSION: These results suggest that under many likely scenarios, a multivariable risk-stratified approach will have substantially greater statistical power than conventional subgroup analysis for detecting heterogeneity in treatment benefits and safety related to previously unidentified treatment-related harm. Subgroup analyses must always be well-justified and interpreted with care, and conventional subgroup analyses can be useful under some circumstances; however, clinical trial reporting should include a multivariable risk-stratified analysis when an adequate externally-developed risk prediction tool is available

    Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane

    Get PDF
    We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i) monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.Comment: 31 pages, 10 figure

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain

    Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    Get PDF
    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.237

    Propensity score matching in estimating the effect of managerial education on academic planning behavior. Study design: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many academic settings teaching a particular topic is applied to every student enrolled in the same academic year, it is a difficult task for researchers to design a randomized control group study. This research aimed to estimate the effect of teaching management and planning on increasing academic planning behavior (APB), using propensity score matching (PSM).</p> <p>Methods</p> <p>In a cross-sectional survey utilizing a self-reported structured questionnaire on a systematic random sample of 421 students in Hanoi Medical University, one of the eight medical schools in Vietnam, this evaluation study adopted regression procedures to assess model fit, then PSM to create a matched control group in order to allow for evaluating the effect of management education.</p> <p>Results</p> <p>The study showed both direct and indirect effects of the education on behavior. After PSM to adjust for the possible confounders to balance statistically two groups - with and without management education, there is statistically a significant difference in APB between these two groups, making a net difference of 18.60% (p < .05). The estimated 18.6 percentage point increase can be translated into the practice of APB by 670 students in the population. This number of academic planners can be attributed to a high recall of important management and planning education.</p> <p>Conclusions</p> <p>The study provided theoretical as well as practical implications to guide the design of the education and evaluation of teaching.</p
    corecore